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THE CENTURY OF TURBULENCE THEORY: 
THE MAIN ACHIEVEMENTS AND UNSOLVED   PROBLEMS 

Akiva Yaglom 

1.   Introduction 

The flows of fluids actually met both in nature and engineering 
practice are turbulent in the overwhelming majority of cases. 
Therefore, in fact the humanity began to observe the turbulence 
phenomena at the very beginning of their existence. However only 
much later some naturalists began to think about specific features of 
these phenomena. And not less than 500 years ago the first attempts 
of qualitative analysis of turbulence appeared - about 1500 
Leonardo da Vinci again and again observed, described and sketched 
diverse vortical formations ('coherent structures' according to the 
terminology of the second half of the 20th century) in various 
natural water streams. In his descriptions this remarkable man 
apparently for the first time used the word 'turbulence' (in Italian 'la 
turbolenza', originating from Latin 'turba' meaning turmoil) in its 
modern sense and also outlined the earliest version of the procedure 
similar to that now called the 'Reynolds decomposition' of the flow 
fields into regular and random parts (see, e.g., [1,2]). However, 
original Leonardo's studies did not form a 'theory' in the modern 
meaning of this word. Moreover, he published nothing during all his 
life and even used in most of his writings a special type which could 
be read only in a mirror. Therefore his ideas became known only in 
the second half of the 20th century and had no influence on the 
subsequent investigations  of fluid flows. 

During the first half of the 19th century a number of 
interesting and important observation of turbulence phenomena 
were carried out (such as, e.g., the early pipe-flow observation by G. 
Hagen [3]) but all of them were only the precursors of the future 
theory of turbulence. Apparently, the first theoretical works having 
relation to turbulence were the brilliant papers on hydrodynamic 
stability published by Kelvin and Rayleigh at the end of the 19th 
century (apparently just Kelvin who know nothing about Leonardo's 
secret writings, independently introduced the term "turbulence" into 
fluid mechanics). However, these papers only 'had relation to 
turbulence', but did not concern the developed turbulence at all. First 
scientific description of turbulence was in fact given by Reynolds [4]. 
In his paper of 1883 he described the results of his careful 
observations   of water  flows in pipes, divided   all pipe  flows into the 
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classes of "direct" and "sinuous" (laminar and turbulent in the 
modern terminology) flows and introduced the most important 
dimensionless flow characteristic (now called 'the Reynolds number') 
Re =UL/v, where U and L are characteristic velocity and length 
scales, and v is the kinematic viscosity of the fluid. Then Reynolds 
proposed the famous 'Reynolds-number criterion', according to which 
the turbulence can exist only if Re > Recr where the critical value Recr 

takes different values for different flows and different levels of 
initial disturbances. And the first serious purely theoretical 
investigation of the developed turbulence was due again to Reynolds 
[4]. In his classical paper of 1894 he strictly determined the 
procedure of 'Reynolds decomposition', derived the 'Reynolds 
equations' for the mean velocities of turbulent flows and made the 
first attempt to estimate theoretically the value of Recr with the help 
of Navier-Stokes (briefly NS) equations of fluid dynamics. (These 
equations assume that the fluid is incompressible and have constant 
density and kinematic viscosity; below only such fluids will be 
considered.) Therefore the year 1894 may with good reason be 
considered as the birth year of the modern turbulence theory. After 
this year turbulence theory was developing energetically during the 
whole 20th century but up to now it is very far from the completion. 
Thus, we have quite weighty reasons to call the 20th century the 
century  of the  turbulence  theory. 

Of course the 20th century deserves also to be called by more 
high-grade title of the century of science. In fact during this century 
the enormous advances were achieved in all sciences and many 
highly important new scientific domains emerged; Theory of 
Relativity, Quantum Physics, Nuclear Physics, Physical Cosmology, 
Molecular Biology are only a few examples. However, in spite of this 
the modern status of the turbulence theory is quite exceptional and 
differing from that of all other new sciences. 

The reason of such exceptional status is that the other new 
sciences deal with some very special and complicated objects and 
processes relating to some extreme conditions which are very far 
from realities of the ordinary life. These objects and processes are 
connected, for example, with the movements having enormously high 
velocities, or manifestations of unprecedentedly high (or, on the 
contrary, low) energy changes, with extremally small (or large) sizes 
of involving objects, enormously large or imperceptibly small length- 
or/and time-scales, and so on. However turbulence theory deals with 
the most ordinary and simple realities of the everyday life such as, 
e.g., the jet of water   spurting   from  the  kitchen   tap.   Therefore,   the 



turbulence   is well-deservedly   often  called  "the  last  great   unsolved 
problem of the classical physics". 

Such statement was, in particular, often repeated by the famous 
physicist R. Feynman who even include it, in a slightly different wording, i n 
his textbook [5] intended for high-school and undergraduate university 
students (the names of three other great physicists to whom this remark is 
sometimes attributed were indicated by Gad-el-Hak [6]). One of these 
physicists, A. Sommerfeld, in the late 1940s once noted that he understood long 
ago the enormous difficulty of the turbulence problem and therefore proposed 
it in the 1920s to his most talented student Werner Heisenberg; however 
Heisenberg did not solve this problem which remains unsolved up to now. 
Finally, the extraordinary status of the problem of turbulence is reflected i n 
the popular funny story about a famous scientist; several versions of this story 
are met in the available literature. According to S. Goldstein [7] the story 
reflects the statement made by H. Lamb in 1932 at some meeting in London 
where Goldstein was present. Goldstein's memory was that Lamb remarked 
then: "I am an old man now, and when I die and go to Heaven there are two 
matters on which I hope for enlightenment. One is quantum electrodynamics, 
and the other the turbulent motion of fluids. And about the former I am really 
optimistic." (In other versions of the story H. Lamb was replaced by L. Prandtl, 
W. Heisenberg, or A. Einstein, and the time and place of the event and 
sometimes also the first of the mentioned matters were changed; see, e.g., [6].) 
Let us consider, however, just the above version where turbulence was 
compared with quantum electrodynamics. It seems that 1932 was too early date 
for considering the quantum electrodynamics as the most important unsolved 
physical problem, however somewhat later, say in the late 1940s and early 
1950s, it was exactly so - at that time all experts in theoretical physics were 
tormented with this problem. However, the solution of it was found not much 
later. The solution made three physicists (R. Feynman, J. Schwinger and S. 
Tomonaga) the recipients of the 1965 Nobel Prize in physics; then this problem 
was closed for ever. When recently a group of prominent physicists 
formulated 10 most important unsolved problems of modern physics (so-called 
"Physics Problems for the Next Millennium"; see http://feynman. 
physics.lsa.umich.edu), these problems showed very clearly how far away 
went the physics of today from the primitive science of 1930-50s when 
noncontradictory development of quantum electrodynamics seemed to be an 
unsolvable problem. However, up to now no cardinal changes occurred in the 
studies of turbulence. Of course, a lot of new particular interesting results 
relating to turbulence were found in the 20th century and many technical 
problems of high practical importance were solved, but there were no Nobel 
Prizes for turbulence studies and most of the riddles of turbulent motion 
remain mysterious. In fact, even the precise content of the 'problem of 
turbulence' is still far from being clear at present (a few remarks about this 
topic will be made at the end of this text). 

Let us now return back to Reynolds' classical papers [4]. In the 
first of them it was stated that the exceeding by the Reynolds 
number Re of a laminar flow of the critical value Recr leads to flow 
turbulization but the mechanism of this transition to a new flow 
regime was not considered in any detail. In the second paper of 1894 



the turbulization was connected with the growth of flow disturbances 
but only a very crude method of estimation of Recr was proposed 
there. In fact, the accurate determination of turbulization conditions 
was then, and is up to now, complicated by the obvious 
incompleteness of the mathematical theory of NS equations. Even the 
conditions guaranteeing the existence and uniqueness of the 
solutions of the most natural initial-value problems for NS equations 
were completely unknown at the end of the 19th century (and are 
far from being perfectly clear even today). Note in this respect, that 
the famous French mathematician J. Leray, who in the paper [8] and 
some other works of the 1930s and 1940s made very important 
contributions to the mathematical theory of NS equations, sometimes 
was inclined to assume that the transition to turbulence may be 
produced by the termination of the existence of the solution of NS 
equations corresponding to the laminar regime of fluid flow. 
However, this assumption was not confirmed afterwards and 
therefore the dominating position again became occupied by the old 
idea of Kelvin, Reynolds and Rayleigh who assumed that flow 
tubulization is caused not by the nonexistence of the laminar-flow 
solution of NS equations but by the instability of this solution to 
small   exterior   disturbances. 

2.     Flow     Instability       and     Transition     to     Turbulence 

The early studies of flow instabilities to small disturbances 
used the simplest approach based on the linearization of the NS 
equations with respect to the disturbance velocities and pressure. 
Studies of the solutions of linearized dynamic equations for the 
disturbance variables which grow in time (or, in the case of a 
spatially formulated parallel-flow stability problem, in streamwise 
direction) form the so-called linear theory  of hydro dynamic  stability. 

The initial approach to the study of linear stability of steady 
parallel laminar flows, which was proposed by Stokes, Kelvin and 
Rayleigh in the second half of the 19th century, is the normal-mode 
method. Here the eigensolutions of the system of linearized NS 
equations are studied. These solutions are proportional to e,xp(-i(ot), 
where co is an eigenvalue which may be real or complex. The 
considered laminar flow is called unstable with respect to small 
disturbances if the eigenvalue a with 3mü) >0 (where 3m denotes 
the imaginary part) does exist, while otherwise the flow is stable. In 
the    spatial    approach    to   the    same    problem    the    eigenfunctions 



proportional to exp(ifcjc) are studied where x is the streamwise 
coordinate of a parallel flow and A: is a complex eigenvalue. Here the 
flow is called unstable if there exists an eigenvalue k with 3mfc <0. 
Spatial approach was first sketched by Orr [9] but in 1907 the spatial 
eigenvalue problem seemed to be unsolvable and therefore such 
approach became popular only in the late 1970s. Note, however, that 
this approach generates some new mathematical problems (relating, 
e.g., to the validity of the spatial version of the Squire theorem and 
to the completeness of the corresponding systems of eigenfunctions) 
and apparently not all of these problems are already solved. 

Let us now revert to the classical temporal approach. According 
to Reynolds' conjecture at values of Re smaller than Recr all 
eigenvalues a>}, j = 1, 2, 3, ... , have negative imaginary parts. Orr [9] 
and Sommerfeld [10] independently proposed in 1907-1908 to 
determine Recr as the smallest value of Re at which there exist at 
least one real eigenvalue a>j. The linear equation determining in the 
case of a plane-parallel flow the eigenvalues co^ is called therefore the 
Orr - Sommerfeld (OS) equation.1 The papers by Orr and Sommerfeld 
led to numerous computations of the OS-eigenvalues, the values of 
Recr, and the "neutral curves" in (Re,fc) and (Re,ü))-planes for various 
parallel and nearly parallel flows. These computations played central 
role in the development of the theory of hydrodynamic stability 
during the main part of the 20th century. However, the values of Recr 

given by the OS equation often exceeded very much values of Re a t 
which real flow instability and transition to turbulence were 
observed. Moreover, in the cases of plane Couette and circular 
Poiseuille flows the OS-method led to conclusion that Recr=°o which 
contradict to experimental data showing that both these flows 
become turbulent at moderate values of Re. (By the way, although 
the validity of the relation Recr=°<> for the Poiseuille pipe flow was 
confirmed by numerous computations with the 100% reliability, the 
rigorous mathematical proof of this result was not found yet and still 
represents   an  unsolved  problem.) 

1 Note that both these authors considered only the simplest case of two-dimensional wave 
disturbances assuming that the eigenvalue a> with the smallest imaginary part must always 
correspond to a plane-wave disturbance (this assumption was rigorously proved only by Squire 
[11] in 1933). Moreover, they both in fact did not use the OS equation since only the case of a 
plane Couette flow was considered by them and in this case OS differential equation of the 
fourth order is reducing to a system of two second-order equations. General form of the OS 
equation (at once for general three-dimensional wave disturbances) was given by Kelvin [12] in 
1887, who however made from this equation an incorrect conclusion. 



The often observed disagreement between the OS estimates of 
Recr and the observed values of Re corresponding to transition to 
turbulence may have several reasons. It is clear, in particular, that 
the consideration of only the eigenfunctions of linearized NS 
equations in fact represents some oversimplification. Proportional to 
e"itot eigenfunctions are only special solutions of the linarized NS 
equations which have amplitudes monotonically (more precisely, 
exponentially) growing or decaying with t. Moreover, already in 
1887 the future Lord Kelvin [13] (at that time he was still called 
William Thomson) found a solution of the linearized NS equations for 
a plane Couette flow which "at first rises gradually from initial small 
value and only asymptotically tends to zero". The paper [13] 
contained some errors indicated by Rayleigh and Orr; apparently 
therefore all its results (including the correct ones) were long 
neglected. As to the nonmonotone Kelvin's solution, Orr [9] 
generalized it finding a whole family of such nonmonotone solutions 
(again for the case of plane Couette flow) some of which grew u p 
(proportional to some positive powers of t) to quite large values 
before they began to decay. Orr even stated the assumption that such 
transient growth of small disturbances may explain the real 
instability of plane Couette flow. However this important remark also 
did not attract then any attention. As a results, the interesting results 
by Kelvin and Orr were long forgotten and some of them were 
independently rediscovered by other authors only in 1960s and 
1970s. 

Strong revival of interest to transient (algebraic in t) growth of 
disturbances arose at the end of the 20th century. During the last 
twenty years many dozens of papers about such growth were 
published (papers [14-20] represent only a few examples of them), 
while much attention to this topic was also given in books [21,22] 
and a survey [23]. It was shown, in particular, that transient growth 
of nonmodal disturbances may exceed very much the growth of the 
linearly unstable wave modes. This circumstance gave rise to keen 
interest to 'optimal disturbances' undergoing most intensive 
transient growth in a given laminar flow; see, e.g., papers [15,24,25] 
devoted to this subject. Note also that in the case of 'subcritical fluid 
flow' with Re <Recr all solutions of linearized disturbance equations 
tend to zero as t ->°°. Therefore here transient growth of any 
disturbance determined by the linearized NS equations must be 
replaced by decay at some value t0 of t. However, even before t0 an 
initially small disturbance may grow so much that the linearized NS 
equations   will be inapplicable  to it and its further   development   will 



be governed by the nonlinear NS equations. Then it is possible that 
the nonlinear theory will show that the considered disturbance will 
continue to grow also at some times exceeding t0. Moreover, it may 
also happen that growing nonlinearly disturbance will produce by 
nonlinear interactions some new small transiently growing 
formations maintaining the process of disturbance-energy growth (at 
the expense of the mean-flow energy) which finally will lead to 
transition to turbulence. This reason may sometimes explain the 
transition of a subcritical flow to turbulence. Some specific nonlinear 
models of such 'subscritical transitions' (dealing usually not with NS 
partial differential equations but with more simple finite- 
dimensional nonlinear systems of ordinary differential equations) 
were considered, in particular, in papers [26-28] (however in [28] 
where the onset of turbulence in subcritical plane Poiseuille flow was 
discussed at length, results found for model equations were 
confirmed also by references to the results found by DNS of a 
disturbance development in a channel flow, i.e., by solution of the 
corresponding initial-value problem for nonlinear NS equations). A 
similar scheme of transition to turbulence of the Poiseuille flow in a 
pipe, where only subcritical disturbances exist, was earlier outlined 
in [29] and compared with the results of simplified numerical 
analysis of disturbance development described by nonlinear NS 
equations. There were also some other numerical simulations of 
temporal or spatial development of flows in plane channels 
containing initial disturbances of various forms. These simulations 
showed, in particular, that the flow development may be rather 
different in the cases where initial disturbances had different forms; 
see, e.g., typical papers [30-32] and discussion of this topic in the 
books  [21,22]. 

Let us now say a few words about the present state of the 
studies of the final stage of the flow transition to turbulence. Recent 
computations of transient disturbance growths followed by flow 
turbulization confirm the conclusion obtained earlier from the 
experimental data which showed that for any laminar flow there are 
several ways to turbulent regime which realizations depend on a 
number of often hardly controlled external factors. In the first half of 
the 20th century almost all performed theoretical studies of flow 
instability dealt only with linear and (rarely) weakly nonlinear 
development of disturbances and therefore the real mechanisms of 
transition to turbulence were then not considered at all. The first 
physical model of laminar-flow-transition was developed by Landau 
[33,34] in the early 1940s when he began working on the volume of 
his  fundamental   Course of Theoretical Physics devoted   to continuum 



mechanics. According to Landau's model transition is produced by a 
series of subsequent bifurcations of flow regime, where each 
bifurcation increases by one the number of periodic components of 
the quasi-periodic fluid motion arising at the preceding bifurcation. 
This simple model (which was in 1948 supplemented by Hopf [35] by 
a mathematical example of such instability development) was then 
almost unanimously accepted by turbulence community as the 
universal mechanism of flow turbulization. However, the further 
development of the mathematical theory of dynamic systems showed 
that Landau's model of flow development not only is nonuniversal 
but is exceptional in some important respects and thus is rarely 
observed. 

Basing on the available in the early 1970s new results of the 
dynamic-system theory, Ruelle and Takens ([36]) proposed a new 
model of transition to turbulence cardinally differing from Landau's 
model. According to these authors, transition to turbulence is realized 
by a succession of a few (usually three) "normal" flow bifurcations of 
Landau-Hopf type, followed by a sudden appearance of a very 
intricate attracting set (called a "strange attractor") in the phase 
space of a flow. The flow states corresponding to phase points within 
the attractor are very irregular and can be characterized as being 
"chaotic" or "turbulent". Ruelle and Takens' model at first caused 
some doubts but later it was found that this model agrees quite 
satisfactorily with some (but not all) experimental data relating to 
transitions to turbulence and can also explain seemingly paradoxical 
data of the old numerical experiment by E. Lorenz [37] who 
considered a low-dimensional numerical model of a convective fluid 
flow. After this discovery the Ruelle-Takens model gained high 
popularity and stimulated a great number of further studies of 
temporal and spatial developments of nonlinear dynamic systems. As 
a result there appeared enormous (and rather sophisticated) 
literature on both the general theory of dynamic systems and its 
applications to flow developments; in this literature the words 
"chaos", "strange attractor" and some other new terms play the main 
part. 

Results of this very extensive and diverse literature relating to 
transition to turbulence are, nevertheless, not fully satisfactory up to 
now. It was, in particular, discovered that there are several 
different "scenarios" for transition of a dynamic system to chaotic 
behavior as "parameter of nonlinearity" (e.g., the Reynolds number of 
a fluid flow) increases. In addition to the scenario by Ruelle and 
Takens, the Feigenbaum scenario of a cascade of period-doubling 
bifurcations ([38,39], cf. also the related model described in [40]), and 
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the so-called intermittent-transition scenario by Pomeau and 
Manneville [41,42] may be mentioned as examples. Note also studied 
in [28,29] subcritical-flow transition scenarios which don't include 
any cascade of successive instabilities. During the last 15 years many 
hundreds of papers and many dozens of books and lengthy surveys 
appeared were these and some other scenarios of transition of 
dynamic systems to chaotic regimes are discussed (the books [43-47] 
and the papers [48-50] discussing the applicability of the concept of 
chaos to turbulence are only a few examples). Let us mention in this 
respect also a few laboratory and numerical studies [51-54] where 
there were described some flow-transition phenomena having 
features close to those of some of the proposed transition scenarios. 
However, all the results obtained up to now do not form a complete 
physical theory of the transition of fluid flows to turbulence. Note 
that up to now there are no strict conditions of realization of various 
transition scenarios although it is known that sometimes different 
scenarios may take place in the same flow depending on some poorly 
known circumstances. And all the proposed scenarios were mostly 
compared with computations relating to some finite-dimensional 
models much simpler than the very intricate infinite-dimensional 
dynamic system evolving in the space of vector-functions of four 
variables in accordance with the NS equations (cf., e.g., paper [55] 
where a scenario for the onset of space-time chaos in a flow was 
studied on the model example of relatively simple nonlinear partial 
differential equation and it was shown that even in this case the 
transition to chaos proves to be quite complicated). Up to now even 
the question about the existence and properties of strange attractors 
in the infinite-dimensional phase spaces of real fluid flows is not 
answered satisfactorily enough (reach in content book [56] in fact 
covers only the attractor problem of two-dimensional fluid dynamics; 
see in this respect also the books listed in [134]). Thus, the 
completely new approaches to the transition-to-turbulence problem 
developed at the end of the 20th century generated, together with a 
number of interesting new results, also a great number of new 
unsolved problems which only confirm the popular assumption about 
the "insolvability of the problem of turbulence". 

3.  Development  of the  Theory of Turbulence     in  the 
20th    Century:    Exemplary    Achievements 

Calling the 20th century 'the century of the turbulence theory' 
we stressed that during this century very great progress was 
achieved in the studies of turbulence phenomena.   And there  are two 



main trends (often overlapping each other) of the turbulence-theory 
development in the 20th century - elaboration of the methods 
allowing to determine the practical effects of turbulence, and the 
investigation of fundamental physical laws controlling the turbulent 
flows. Below only a few results relating to the second group will be 
discussed; these results were long assumed to be the most important 
achievements of the theory of turbulence but at the end of the 
century it became clear that there are some quite reasonable doubts 
concerning the classical results discussed below. 

3.1. Similarity Laws of   Near-Wall Turbulent Flows 

The class of near-wall parallel (or nearly parallel) laminar 
flows includes such important examples as flows in broad plane 
channels (which may be modeled with a good accuracy by plane 
Poiseuille flows produced by a pressure gradient in a layer between 
two infinite parallel walls), flows bounded by parallel walls one of 
which is stationary and the other is moving with constant velocity 
(plane Couette flows), flows in long circular pipes (circular Poiseuille 
flows), and boundary-layer flows over flat plates in the absence of 
the longitudinal pressure gradient (Blasiius boundary-layer flows). 
Plane Poiseuille, plane Couette, and Blasius boundary-layer flows are 
bounded by flat walls which for simplicity will be assumed to be 
smooth. Pipe flows are bounded by a cylindrical wall (also assumed 
to be smooth) but if pipe radius R is much larger than the 'wall 
length-scale' Zw = v/u*, where u* = (r^/p)1'2 is the friction velocity, TW - 
the wall shear stress, and p - fluid density (only this case will be 
considered below), then it is usually possible to neglect, in a 
reasonable first approximation, the influence of wall curvature, i.e. to 
consider again the wall as flat one. For fully turbulent near-wall 
flows the mean-velocity profiles U(z) (where z is the normal-to-wall 
coordinate) and the skin-friction laws (giving the value of the 
friction, or drag, coefficient) were carefully studied in the late 1920s 
and early 1930s by L. Prandl and T. von Kärmän who combined a 
few simple semi-empirical hypotheses with the methods of 
dimensional analysis (based on definite assumptions about the list of 
physical parameters which are essential here). Apparently the most 
important discovery of the mentioned authors was the discovery of 
the logarithmic mean-velocity law for the values of z large with 
respect to Zw and small with respect to the vertical length scale L 
(equal to the half-distance between parallel walls, pipe radius, or the 
boundary-layer thickness).  According to this law 
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U(z) = u.[A\n(zuJv) + B]       for Zw « z « L, (1) 

where A and B are universal constants (and K = 1/A is called the 
von Kärmän's constant). 

Logarithmic law (1) was first announced by von Kärmän in 
1930 at the International Congress of Applied Mechanics at 
Stockholm. He derived it from a seemingly natural "similarity 
principle" while Prandtl in 1933 gave another more simple 
derivation of this law (see, e.g., [7]). Still simpler purely dimensional 
derivation of this law was proposed in 1944 by Landau [34] This 
derivation was based on 'rational arguments' stating that at z «L 
the 'external length scale' L cannot affect the flow structure, while at 
z»Zw the velocity shear (but not the velocity itself) of a developed 
turbulent flow cannot be affected by v (since at such z the velocity 
gradients are quite small and also the 'eddy viscosity' is much 
greater than the molecular viscosity). Therefore, at Zw «z «L the 
shear dU/dz can depend only on u* (determining the vertical flux of 
momentum) and z. Thus dU/dz -AuJz there and this implies Eq. 
(1). Similar arguments were applied by Landau [34] to the first 
derivation of the logarithmic law of the form 

T(z) - T(0) = 7\[ATln(zw/v) + BT(Pr)] (la) 

for the profile of mean temperature (or mean concentration of some 
passive admixture) T(z) in a wall flow with a heat (or mass) transfer 
from the wall. Here T* = j^/u* is the heat-flux scale of temperature 
(for definiteness only the case of heat transfer will be mentioned in 
this paper), jw is the temperature flux at the wall, while AT is a new 
constant, and BT(Pr) is a function of the Prandtl number Pr = v/%, 
where % is the coefficient of thermal diffusivity. 

One more elegant derivation of the law (1) was proposed in 
1937 by Izakson [57] who recalled that the rational arguments of 
dimensional analysis led Prandtl to the formulation of the general 
wall law   of the form 

U(z) = ujw(u*z/v) (2) 

(where f^ is an universal function) for velocity U(z) at z « L. Similar 
dimensional arguments imply also the validity at z » Zw of the 
velocity  defect law 
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U0- U(z) = u*?2\z/L),    where U0 = U(L) (3) 

(for a pipe flow the law (3) was first empirically detected in 1911 by 
T. Stanton and in 1930 it was justified by dimensional arguments by 
von Kärmän). Then Izakson noted that if an overlap layer of not too 
small and not too large values of z exists where both laws (2) and 
(3) are simultaneously valid, then it is easy to show that in this layer 
the wall law (2) must have logarithmic form (1) while the velocity 
defect law (3) must be also logarithmic and have the form 

U0 - U(z) = u,[-Aln(z/L) + B(1)]. (4) 

Here again A=1/K, and B(1) is a new constant taking different values 
for flows in channels, pipes, boundary layers, and for plane Couette 
flow. 

Izakson derivation of two logarithmic laws quickly gained 
popularity. In particular, in 1938 C. Millikan [58] noted that Izakson's 
arguments may be applied to flows along both smooth and rough 
walls (in the latter case the coefficient B will depend on 
characteristics of wall roughness) and that adding together Eqs. (1) 
and (4) one may easily derive the famous Prandtl-Nikuradse 
logarithmic skin-friction law for turbulent flows in smooth-wall and 
rough-wall pipes and plane channels. (Millikan also remarked that 
the same method can be applied to turbulent boundary layers. 
However he did not consider boundary-layer flows and the first 
derivation of Kärmän's skin-friction law for boundary layers by the 
sketched here method was apparently due to Clauser [59].) Such 
derivation allows to determine the dependencies of the coefficients 
of skin-friction laws on logarithmic-law coefficients A, B and B(1); 
obtained results were found to be in agreement with the available 
data of velocity and skin-friction measurements. Some further 
developments of Izakson's method will be indicated slightly later. 

The logarithmic velocity-profile and skin-friction laws for wall 
turbulent flows were conventionally considered as some of the most 
fundamental (and most valuable for the practice) achievements of 
the 20th-century turbulence theory. These theoretical results were 
many times compared with data of direct measurements of 
turbulent-flow characteristics in pipes, boundary layers and plane 
channels. As a rule, obtained results agreed more or less 
satisfactorily with logarithmic laws (see, e.g., the recent survey [60]) 
but measured values of 'universal coefficients' A, B, and B(1) of these 
laws proved   (and prove   up to now)  to be rather   scattered.   During 
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long time the most popular estimates of K = A"1 and B were these 
ones: K=0.40 (or 0.41, but the values in the range from 0.36 to 0.46 
were also sometimes obtained), B = 5.2 (but all values in the range 
from 4.8 to 5.7, and also some values outside of this range, were met 
in the literature). The values of B(1) were measured not so often; 
according to majority of estimates B(1) ~ 0.6 for circular pipes and 
plane channels, and B(1) ~ 2.4 for flat-plate boundary layers (see, e.g., 
the surveys [61,62]). The range of z-values belonging to the so-called 
logarithmic layer of a wall flow, where Eq. (1) is valid, was also 
subjected to great scatter; most often it was suggested that this layer 
is extended from the lower limit at z « 50/w (coefficient 50 was 
sometimes replaced by 30 or by 70) up to the upper limit at z ~ 
0.15L (instead of 0.15 the coefficients 0.2 and 0.3 were sometimes 
used). And at the present time the uncertainty relating to the 
coefficients K = A"1 and B and limits of the 'logarithmic layer' did not 
become smaller;  see below about this matter. 

There were also many works extending and generalizing the 
theory of the logarithmic layer and Izakson's method of derivation of 
results relating to this layer. Von Mises [63] considered the cases of 
non-circular pipes while the applications of the same method to 
near-wall turbulent flows with heat (or mass) transfer were 
considered in [61,62,64]. Numerous applications to flows along rough 
walls and wall-flows with non-zero pressure gradients were 
discussed in surveys [61,65]. Comprehensive generalization of the 
'logarithmic-layer theory' to the case of the near-wall layers of 
turbulent flows in stratified fluids with mean density p(z) depending 
on the vertical coordinate z (first of all to atmospheric and oceanic 
surface layers) was developed by A.S. Monin and A.M. Obukhov; see, 
e.g., Chap. 4 of the book [66]. Townsend in the book [67] published in 
1956 formulated the general 'Reynolds-number similarity principle' 
used then for the derivation of the similarity laws (2) and (3) and 
logarithmic law (1). Simultaneously he also sketched applications of 
the general similarity arguments to the second moments of velocity 
fluctuations and, in particular, investigated indicated below wall laws 
(5) for the second-order moments where k+l+m = 2. More detailed 
exposition of the applications of Izakson's arguments to moments of 
velocity-component fluctuations (u^Uj.Uj) = (u,v,w) (and temperature 
fluctuations 8) was presented in the paper [61]. In this paper it was 
postulated that in the near-wall flow region, where z «L, the wall 
similarity law of the form 
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Mklmu) - <uVwra> = («*)k+1+mfklma«yv), (5) 

is valid, while in the outer flow region, where z »Zw = v/u*, the outer 
similarity law of the form 

Mklm(z) = (aOk+1+mgklm(^). (6) 

takes place. Here angular brackets denote the probabilistic 
(ensemble) averaging, while fklm and gklm are two families of universal 
functions of one variable. If an overlap layer, where /w «z «L, 
exists in the considered flow, then both Eqs. (5) and (6) must be valid 
there and this implied that in this layer the moments of velocity 
fluctuations take constant values, i.e. 

MJz) = <uVwm> =aklra(«.)k+1+m (7) 

where aklm are universal constants. Related similarity laws can be 
formulated for many other statistical characteristics of the velocity- 
component and temperature fluctuations in fully turbulent wall 
flows (e.g., for correlation functions, spectra and multipoint higher 
moments  of these fluctuations). 

Beginning from the 1930s logarithmic velocity and skin-friction 
laws were used in the engineering practice much more widely than 
any other scientific results relating tO turbulence, and very long they 
were universally treated as indisputable certainty. Such opinion was 
strongly supported by the unquestionable authority of famous 
scientists who independently proposed different derivations of these 
laws and then actively popularized them; the list of such scientists 
includes the names of L. Prandtl, T. von Kärmän, G.I. Taylor, L. 
Landau, and C.B. Millikan. (By the way, A.N. Kolmogorov also highly 
estimated logarithmic velocity laws and their derivation from the 
overlap-layer arguments. He even elucidated these results and their 
application to the determination of skin-friction laws in two short 
notes of 1946 and 1952 published in "Doklady of USSR Acad. Sei." 
and intended for engineers; see the list of his works on turbulence in 
[68].) However, at present the study of turbulence advanced very 
much in comparison to its state in the middle of the 20th century 
and this development produced some doubts in the universal 
validity of these classical results. 

Prandtl's wall law (2) follows from the assumption that at z « L 
the length L cannot affect the flow characteristics. This assumption 
seemed   to be  obvious   not  only  in   1925,   when   the   wall   law   was 
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proposed by Prandtl, but also long after this year, but now it causes 
doubt by reasons which will be explained below. However the 
inclusion in the velocity-defect law (3) of the friction velocity ut 

determined by flow condition at the wall did not always seem fully 
motivated and some scientists were long ago inclined to think that 
the law (3) is in fact of empirical origin. (For this reason some 
authors even proposed to replace the near-wall velocity scale u* in 
(3) by a scale more appropriate to outer-flow conditions; one such 
example will be mentioned below.) Reverting now to the 
independence of flow characteristics near the wall (at z <<L) of the 
length L, let us note that such independence became to be non- 
obvious after the discovery of the important part playing in 
turbulent flows by the large-scale organized vortical structures (so 
called "coherent structures") which affect all regions of the flow. The 
study of these structures and of their role in turbulence was 
developed rapidly after the end of the World War II (at great degree 
under the influence of clear presentation of this topic in Townsend's 
important book [67] of 1956). 

Slightly later Townsend's experimental studies of turbulent 
boundary layers [69] showed that the intensities <u2> and «cv^of the 
horizontal velocity fluctuations in the 'logarithmic layer' (where Zw < 
z«L) sometimes take different values in two boundary layers with 
the same value of u*. This result clearly contradicted to the wall laws 
(7) corresponding to mean squares <u2> and <v2>. Townsend explained 
this disagreement with the wall laws assuming that turbulent motion 
in the wall regions of turbulent boundary layers consist of the 
"active" component [which produced the shear stress % - -p(uw) and 
satisfies the usual wall laws (1), (2) and (5)], and "inactive" 
practically irrotational component which is produced by large-scale 
fluctuations in the outer region of boundary layer and depends on L 
(i.e. on the boundary-layer thickness, since in [69] only boundary- 
layer characteristics were discussed). Later Bradshaw [70] (see also 
[71]) confirmed Townsend's hypothesis by new experimental data 
and showed that it explains also some other experimental results 
inexplicable by the traditional theory. Moreover, Bradshaw also 
repeated Townsend's statement that "inactive motions" contribute 
nothing to the mean-velocity profiles [and hence do not violate the 
logarithmic velocity laws] and to vertical (normal-to-wall) velocity 
fluctuations w. And in the second edition of 1976 of the book [66] 
Townsend [72] connected the inactive motions with the contributions 
to the fluid motions made by a definite family of similar to each 
other vortical structures differing by their length scales. Basing on 
this idea he derived new equations for quantities <u2> and <v2> within 
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the logarithmic layer; these equations included in addition to 
constant right-hand sides a200 and a020 of Eqs. (7), also terms 
proportional to ln(z/L) (together with small terms which depended 
on z//w and became negligible at very high Re). According to data b y 
Perrry and Li [73], Townsend's equations agree more or less 
satisfactorily with the results of measurements of mean squares of 
horizontal velocity fluctuations. (Note, however, that all experimental 
data relating to higher moments of velocity fluctuations are much 
more scattered and controversial than results of mean-velocity- 
profile measurements; cf., e.g., [60].) Arguments similar to those of 
Townsend [72] were later applied by the present author [74] to 
theoretical evaluation of intensities of the horizontal wind 
fluctuations in the unstably stratified atmospheric surface layer. This 
approach allowed to explain seemingly paradoxical dependence of 
the intensity of wind fluctuations at few-meter heights above the 
Earth's surface on the thickness of the planetary boundary layer 
having the order of 1-2 km. 

Townsend's results show that the influence of large-scale 
coherent structures made incorrect at least some of the classical 
similarity laws postulating the negligible effect of the external length 
scale L on the flow characteristics within the flow region where z < 
L. Of course, in [72-74] only some particular violations of traditional 
wall laws were noted. Since, however, at present it is known that 
large-scale structures of many different types and length scales exist 
in developed turbulent wall flows, it may be expected that all the 
similarity laws which neglect the possible influence of the length L 
are of limited accuracy. And the other fundamental assumption used 
in the formulations of classical similarity laws of near-wall turbulent 
flows, according to which the molecular-viscosity effects must be 
negligibly small at z >>/w = v/w*, also becomes questionable in the 
light of recent experimental findings. 

Experiments (and numerical simulations) of 1990s definitely 
show that the developed turbulent flows at large values of Re always 
include a tangle of intense and very thin vortex filaments which 
diameters sometimes are of the order of the Kolmogorov length scale 
7]. (This length scale characterizes the spatial extent of viscous 
influences; for its definition see Eq. (11) below, while more detailed 
discussion of the role of the filaments may be found, e.g., in [2], Sec. 
8.9, and [114], Sec. 5.) In other words, according to modern views the 
range of scales of organized vortical structures existing in fully- 
developed turbulent flows extends from the external length scale L 
up to Kolmogorov's internal   length   scale   r). Since the  topology   and 
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general structure of the tangle of filaments must depend on Re and 
the filaments are found in all regions of turbulent flows, the 
characteristics of the high-Reynolds-number turbulence also may 
everywhere depend on v and Re=UL/v. (Moreover, Barenblatt [83] 
noted in the paper of 1999 that L. Prandtl in his remark made at the 
Intern. Congr. of Appl. Mech. of 1930 after the talk by von Kärmän 
where the logarithmic form of the velocity profile first appeared, 
indicated that at moderate values of Re the influence of near-wall 
streaks on the flow at greater heights may generate mechanism of 
possible influence of viscosity v on turbulence characteristics at z > 
Zaw.  However, later Prandtl apparently never mentioned this effect.) 

The arguments presented above imply that the classical 
logarithmic mean-velocity (and mean-temperature) laws of wall 
turbulent flows possibly represent only some reasonable 
approximation which accuracy must be thoroughly checked. 
Barenblatt, Chorin and Prostokishin, who are apparently the most 
energetic modern opponents of logarithmic laws, reasonably noted 
(in [75] and a number of other publications) that the description of 
the mean velocity U(z) of wall turbulent flows by power laws U(z) °= 
zk was widely used long enough by scientists and engineers and, if 
the power k was properly chosen for all values of Re of interest, 
usually led to satisfactory agreement with the data over a wide 
range of z-values (in this respect usually Schlichting's book [76] is 
referred). Barenblatt et al. indicated also a great number of more 
recent publications containing the data illustrating the dependence 
on Re of the mean flow characteristics of turbulent near-wall flows. 
(A number of appropriate references may be found in the survey 
paper [77]; in a short subsequent remark [6] Gad-el-Hak also noted 
quite reasonably that since any doubt concerning logarithmic laws 
where long considered as a heresy, most of the papers containing 
such heresies were apparently rejected by editors of scientific 
journals.) 

In [75] and the other related papers Barenblatt et al. suggested 
that logarithmic law should be replaced by laws of quite different 
form. This proposition was directly connected with some general ides 
introduced in 1972 by Barenblatt and Zeldovich [78]. It was noted in 
this paper that self-similar solutions of the form V(x,t) = A(t)F[x/l(t)] 
(where x and t are some independent variables) are very often 
encountered in fluid dynamics and other branches of physics as 
'intermediate asymptotics' describing the behavior of the dependent 
variable V in regions where direct influence on it of peculiar 
features of the initial or/and   boundary   conditions  is already   lost but 
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the system is still far from being in a state of equilibrium. It was 
then remarked that only a small part of such self-similar solutions 
may be determined by simple arguments of dimensional analysis. 
For this part of self-similar solutions the term 'self-similar solutions 
of the first type' was proposed in [78], while all the other self-similar 
solutions were called 'self-similar solutions of the second type'. 
(Later also the terms 'complete similarity' and 'incomplete similarity' 
were sometimes used by Barenblatt for these two types of self- 
similar solutions.) In [78] and the subsequent publications of the 
same authors (in particular, in Barenblatt's book [79]) a great 
number of self-similar solutions of both types was indicated. The 
general form of a solution of the first type may be uniquely 
determined with the help of dimensional arguments; hence it can be 
easily found and usually includes some factors raised to definite 
integer (or simple fractional) powers. For a solution of the second 
type the situation is much more complicated; here only some 
supplementary physical arguments and experimental data may 
suggest the general form of the sought for solution which usually 
includes some factors raised to powers which may take arbitrary 
values. The corresponding exponents may be determined in some 
cases from solutions of some supplementary eigenvalue problems of 
physical origin (see examples in [79]) but very often they must be 
determined from results of data processing. And the conditions 
guaranteeing the existence of a self-similar solution of the second 
type and allowing to determine its form most often are unknown; 
here the physical intuition and the good luck of the explorer may 
play the decisive part. 

The problem concerning self-similar solutions of the second 
type in turbulence theory is especially complicated. Recall that the 
evolution of a fluid flow is governed by system of Navier-Stokes 
equations. These partial differential equations are very complicated, 
they cannot be easily analyzed and are insufficiently investigated up 
to now while their solutions corresponding to turbulent flow regimes 
are enormously intricate and completely nonexplored. Therefore, it 
seems that the dynamic equations could not help here in search of 
needed self-similar solutions. On the other hand, the abundance of 
self-similar solutions of the second type reliably established in other 
branches of continuum mechanics gives some reasons to expect that 
such solutions may play definite part in the turbulence theory too. To 
verify this expectation, it was only possible to perform the careful 
examination of the available experimental data of high enough 
quality. 

Such examination of the pipe-flow turbulent data by Nikuradse 
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[80] (which were indisputably the best ones available in the 1930s 
and are sometimes referred now too) was carried out by Barenblatt 
in the early 1990s (see, e.g., [81]) and then presented at greater 
length in a number of papers (in particular, in the joint paper with 
Chorin and Prostokishin [75]). According to these data the velocity 
profile U(z) of a turbulent flow in a pipe satisfied the simple equation 
of the form 

U(z)/u. = C(u*z/v)a (8) 

over almost the whole pipe cross-section (except the thin 'viscous 
sublayer' where utz/v does not exceed some threshold value of the 
order of a few tens). In Eq. (8) parameters C and a do not depend 
on z but vary (rather slowly) with the flow Reynolds number Re = 
UmD/v (where Um is the flow velocity averaged over the pipe cross- 
section and D=2Ris the pipe diameter). Careful examination of the 
Nikuradse data led Barenblatt to proposition of the following 
expressions for the functions C(Re)   and   a(Re) 

C(Re) = -^ + -, a(Re)= ——. (9) 
V3      2 21nRe 

Eqs. (8) and (9) were first obtained by treatment of the old 
data by Nikuradse. However in [75] these equations were compared 
with a number of more recent pipe-flow and boundary-layer 
turbulence data and according to results of this paper (which were 
not unanimously supported) all the considered data agree well with 
Eqs. (8) and (9). Later results of more detailed comparison by 
Barenblatt et al. of Eqs. (8) and (9) with velocity profiles U(z) 
measured in various fully turbulent zero-pressure-gradient 
boundary layers on flat plates were presented in [82]. (In the case of 
boundary layers the pipe-flow Eqs. (8)-(9) were used without any 
modification but now the value of Re was determined as that leading 
to the best fit of Eqs. (8)-(9) with the available velocity data. This 
means that here anew 'boundary-layer thickness' A was introduced 
by the condition that the substitution of Re = AU0/v, where U0isthe 
free-stream velocity, into Eq. (9) leads to good agreement of Eq. (8) 
with the measured mean-velocity profile U(z).] In [82] it was found 
that the velocity profiles of turbulent boundary layers agree well 
with the power law (8)-(9) in the range of z-values extending from 
the upper edge of the viscous sublayer (located at u*z/v - 70) to the 
upper    edge    of   the    whole    boundary     layer    above    which    the 
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homogeneous 'free stream' begins. However, if the 'free stream' is 
nonturbulent, then in the 'upper sublayer' adjoining the 'free stream' 
another power law is valid which differs from the law (8)-(9) valid 
in the 'intermediate layer' located between the viscous and upper 
sublayers. According to data analyzed in [82], the upper-sublayer 
velocity profile have the form: 

U(z)/u. = B(w,z/v)p (10) 

where ß is an universal constant which is close to 1/5, while B takes 
different values  in different experiments. 

Let us now consider at greater length the power law of Eqs. (8) 
and (9) proposed for the intermediate layers (where z takes not too 
high and not to low values) of flows in round tubes, plane channels 
and flat-plate boundary layers. The important questions about the 
declared universality of these equations and the ranges of z and Re 
values where they are applicable were widely discussed and up to 
now   produce   hot-spirited   controversies. 

Barenblatt et al. repeatedly stated that they regard the power 
law (8) as having the theoretical foundation of the same rigor as the 
foundation of logarithmic law (1). I think that this statement is both 
correct and incorrect (even if the possibility to measure 'the degree 
of rigor' will be accepted). It is true that both laws have no fully 
rigorous proofs. The results given by dimensional analysis which 
provided the humanity with so many physical laws of the first-rate 
importance, are always not completely rigorous for a captious 
mathematician, since they are based on unproved assumptions about 
the list of physical parameters really affecting the studied process. It 
is also true that very often the development of science leads to 
discovery of new factors which were fully neglected in the past and 
violate the correctness of laws which earlier seemed to be 
established forever. Nevertheless, the hypotheses used in the 
dimensional analysis are of physical character and as a rule are 
based on clear physical intuition without which a physicist cannot be 
a good scientist. Just physical base of dimensional arguments 
implying the logarithmic law (1) made this law long undisputed for 
listed  above  great scientists. 

Of course, physical intuition may sometimes deceive great 
scientists too and may be questioned by new discoveries. In 
particular, the discovery in the second half of the 20th century of 
great part playing in turbulence phenomena by organized vortical 
structures     of   various    kinds    and    sizes   changed    noticeably    the 
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Situation. It is clear that such structures may depend on some 
dimensional physical parameters neglected in the traditional 
derivation of the logarithmic law and this circumstance can restrict 
the validity of the laws (1), (la) and (4) or even make them 
incorrect. Unfortunately, at present there is not too much information 
about the organized structures which may affect the mean velocity 
profiles of steady near-wall turbulent flows. (Recall that Townsend 
[69] and Bradshaw [70] stressed that studied by them 'inactive 
motions' do not affect the mean velocity; the same statement was 
also repeated in [71-73] in regard to 'attached eddies' of various 
sizes.) Nevertheless, since not all coherent structures are known well 
enough and in principle some of them may affect U(z), it is 
impossible to exclude the possibility that 'classical similarity laws' 
represent only a reasonable first approximations valid when possible 
influences on the mean velocity U(z) of the length L atz«L and of 
the viscosity v at z »/w are fully neglected. Therefore, found in 
experiments precise validity of the logarithmic law (1) with 
universal values of coefficients A and B may be considered as a 
proof of the negligibility of these influences, while discovered 
violations of this law or nonuniversality of its coefficients show that 
there exist some nonnegligible  such influences. However, the 
power law (8) has only much more general grounds: it is supported 
by the very wide prevalence of 'power laws' and 'incomplite 
similarities' not only in physics but also in many other scientific 
fields. Many examples of such 'incomplete similarities' which include 
power laws with 'anomalous exponents' (which can take arbitrary 
values), are impressively demonstrated in [78,79]. It was also 
correctly stressed there that in many cases where incomplete 
similarities were reliably detected, they could not be derived 
rigorously from some mathematical equations since such equations 
were lacking. Nevertheless, this circumstance does not mean that 
'incomplite similarities' represent an universal form of the laws of 
nature which take place everywhere and everywhen. Moreover, 
while the forms of 'self-similar solutions of the first type' are usually 
determined by the dimensionality arguments with rather high 
degree of definiteness, 'similarity solutions of the second type' as a 
rule may have many different forms. Therefore, if even one is sure 
that such solution exists, this did not determine automatically its 
precise form which choice requires the use of some supplementary 
assumptions. At the same time, in many important cases the 
existence of a 'self-similar solution of the second type' is not enough 
for determination of definite verifiable physical conditions and limits 
of its validity. 
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Reverting to the logarithmic velocity-profile law, one must say 
that at present it seems quite possible that the influence of organized 
structures of various types, which was neglected in conventional 
derivations of this law, will require to replace it by some more 
general incomplete-similarity law. On the other hand, such a 
possibility don't prove that the laws (1) - (4) in all cases must be 
considered as being incorrect and inappropriate for any practical use. 
Of course, the law (8) which contains two unknown functions which 
may be arbitrarily chosen, allows to get rather good agreement with 
the experimental data. Therefore this law is a good candidate for a 
new version of the velocity-profile equation which will describe the 
observed profiles U(z) more accurately than the logarithmic law 
where only two constants may be varied. In [83] and some other 
papers by Barenblatt and Chorin the overlap-layer approach to 
derivation of Eq. (8) was considered; however here it proved to b e 
necessary to add the argument Re to the arguments of functions f(1) 

and f(2) on the right-hand sides of Eqs. (2) and (3). This addition 
implies that now in the overlap layer Eq. (1) will be valid where 
however A and B will be not constants but arbitrary functions of Re. 
The presence of two arbitrary functions gives too many possibilities 
to fit these equations to the available experimental data. In [83] it 
was shown that Eqs. (8)-(9) may be make consistent with the 
logarithmic law with coefficients A and B dependent on Re, if some 
consequences of the vanishing-velocity approach of Chorin [83,114] 
will be additionally taken into account and some very small (and 
asymptotically negligible) terms will be omitted. Therefore, the 
derivation of Eqs. (8)-(9) with the help of the overlap-layer method 
is possible but such derivation is somewhat artificial and therefore 
less convincing than very elementary Izakson's derivation of the law 
(1) which however is based on the use of much more special 
assumptions. Note in this respect, that George and Castillo [91] (this 
paper will be considered below) also tried to apply the overlap-layer 
method to a situation where both functions f(1) and f(2) depend 
additionally on Re, but using some other supplementary assumptions 
they got quite different form of the overlap-layer velocity profile. 

Of course, the derivation of Eqs. (1) and (4) uses some empirical 
facts too; moreover, the value of coefficients A and B also must be 
determined here from experimental data. Therefore, it may be said 
that the logarithmic laws are to some degree of empirical origin. 
However, it is clear that Eqs. (8)-(9) are empirical to greater degree 
than the logarithmic law (1). (The possibility to measure 'the degree 
of empiricism' is somewhat vague but the general sense of this 
expression  is rather   clear.) In spite of the connection   of Eqs. (8)-(9) 
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with Chorin's vanishing-velocity method of physical origin, the 
empirical part of the arguments leading to these equations remains 
to be quite considerable. Of course, the empirical laws are often of a 
great importance and there is always a hope that a purely physical 
base for such a law will be determined later. In the case of Eq. (8) 
subsequent physical arguments maybe will help to determine the 
strict conditions of its validity. Moreover, if some necessary, or 
sufficient, conditions of validity will be found for the law (8), they 
probably will also help to estimate quantitatively its accuracy. 

The accuracy estimate is important for Eqs. (8) and (9) since 
the degree of their agreement with the available experimental data 
is up to now a point of controversy. Experimental studies of near- 
wall turbulent flows continue to be popular and recently several 
such investigations claiming to be quite accurate were carried out 
but this did not clarify the situation. Here we will only mention often 
cited recent papers by Zagarola and Smits [84] and Österlund et al. 
[85] which both stated that their data confirm the validity of the 
logarithmic law (1) and both gave rise to a controversy. 

Zagarola and Smits' measurements were made in the 
"superpipe" at Princeton University where strongly compressed air 
was used as a working fluid. The compression decreases the 
kinematic viscosity v of air and thus make possible the study of 
pipe flows in a wide range of very high Reynolds numbers (data used 
in [84] covered the range 31xl03 < Re < 35xl06 where Re is based on 
the average flow velocity Uav and pipe diameter 2R). The authors 
found that at Re > 4x105 logarithmic law (1) (with coefficients K= 

1/A=0.436, B=6.15) was valid for values of z in the range 600/w < z < 
0.07R. Note that found by Zagarola and Smits limits of the logarithmic 
layer and the values of 'universal coefficients' A and B differ 
considerably from 'traditional estimates' of previous investigators 
(who usually observed log-law at smaller values of Re). And for the 
range 60/w <z < 500/w (or 60/w <z <0.15R if Re is not great enough), 
which was earlier always considered as a part of (or even the whole) 
logarithmic layer, it was found that there at all values of Re the 
velocity profile U(z) has the power form U(z)/u* = 8.7(z/Zw)°137 - this 
result clearly disagrees with all previous pipe-flow data. As to the 
velocity defect law (3), the authors recommended to replace in it the 
near-wall velocity scale u* by the outer velocity scale U0 = Umax- Uav 

where Umax is the mean velocity at the pipe axis. According to [84], 
this replacement makes the function f(2) really independent on Re 
while at large values of Re it changes nothing since then the ratio 
U(/«* takes constant value. 
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Österlund et al. [85] summarized results of independent 
experimental studies of flat-plate boundary layers in two wind 
tunnels: one at the Royal Institute of Technology in Stockholm and 
the other at the Illinois Institute of Technology in Chicago. These 
studies covered the range 2500< Re< 27000 of Reynolds numbers Re 
= U08**/v (where U0 is the free-stream velocity and 8** is the 
momentum thickness of boundary layer). According to [85], results of 
both experiments excellently agree with each other and show that in 
the studied range of Re-values there exists an 'overlap layer' where 
logarithmic laws (1) and (4) are both valid with independent on Re 
constant coefficients: K= A"1 =0.38, B=4.1, B(1) = 3.6 (as the external 
length-scale L now the thickness 8 = 895 of the layer where U(z) < 
0.95U0 was used). In the experiments by Österlund et al. the overlap 
layer corresponded to the conditions: 200/w <z < 0.158. Note that 
values of coefficients of logarithmic laws and of the overlap-layer 
limits coincide here neither with values found by Zagarola and Smits 
nor with conventional values of previous authors. 

Barenblatt et al. in [75] and some other papers asserted that 
Princeton data for Re >106 contain a systematic error due to neglect 
of the wall-roughness influence which becomes important at high Re- 
values, while all the other data of Princeton group agree very well 
with Eqs. (8)-(9). However Smits and Zagarola rejected in [86] the 
accusation that the wall roughness affected substantially their data 
relating to high values of Re and in [87] they disagreed with the 
assertion that the low-Re Princeton data confirm the validity of Eq. 
(8). (According to [87] their data agree with logarithmic law (1) 
better than with power law (8) even in the case where optimal 
values of functions C(Re) and cc(Re) were determined anew by 
processing of the Princeton, and not Nikuradse's, data.) Answering to 
[87], Barenblatt and Chorin published comments [88] repudiating the 
arguments in this paper, and just then Smits and Zagaropa declared 
in [86] their disagreement with statements presented in [88]. As to 
the paper [85], Barenblatt et al. [82] presented some diagrams 
obtained by processing of the original data used in [85] and showing 
that these data agree very well with Eqs. (8)-(9). Later, in the note 
[89] they tried to show that data processing used in [85] had serious 
defects while correct processing leads to results supporting 
conclusions formulated in [82] and [75]. However, the note [89] again 
did not close the polemic: it caused the comments [90] rejecting the 
made accusations and presenting a diagram showing that the data 
used in [85] agree with the logarithmic law (1) not worse (maybe 
even slightly better) than with the power law (8). 
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The prolonged controversy on the true form of the turbulent- 
wall-flow velocity profiles was continued at the 53d Annual Meeting 
of the APS Division of Fluid Dynamic in Washington, D.C. (November 
19-21, 2000). The Invited Lecture by AJ. Chorin there was devoted 
again to his and Barenblatt's theory of the mean-velocity profiles in 
turbulent boundary layers. The critical estimation of this theory was 
reflected in three short talks by Buschmann and Gad-el-Hak, Panton, 
and Nagib et al. [91]. Buschmann and Gad-el-Hak analyzed the 
experimental and DNS data of mean-velocity measurements or 
calculations in fully turbulent zero-pressure-gradient boundary 
layers (with 300 < Re < 6200, where again Re =U08**/v) obtained by 
six independent research groups. These data were compared with 
the results following from both traditional logarithmic laws and 
recently proposed power laws. The authors found that the log law 
and power law both agree well with the data within considerable but 
somewhat different ranges of z values. The log law becomes to be 
applicable at lower distances from the wall while the power law 
continues to have a good accuracy in some part of the boundary 
layer placed above the 'logarithmic layer' where the log law is valid. 
However, there is a quite considerable flow zone where both laws 
agree well with all the available data and have there practically the 
same accuracy. 

In Panton's talk [91] (at greater length its contents is described 
in the informal document [92]) was devoted to studies of the velocity 
profile of a turbulent pipe flow. Here the traditional overlap-layer 
arguments were supplemented by corrections taking into account the 
influence of finite (but high) values of Re. To compute such 
corrections Panton used the method of matched asymptotic 
expansion which has many applications to fluid mechanics (see, e.g., 
[93,94] and short discussions of its applications to high-Reynolds- 
number turbulent flows in the books [95,96] and surveys [61,62]). 
Panton considered only the first approximation of this method which 
he presented in a special form (corresponding to the uniformly valid 
so-called Poincare expansion), while the initial profile equation 
included in his analysis both the log low in the overlap layer and the 
wake law in a zone adjacent to this layer. Then he showed that the 
considered by him approximation leads to results describing with a 
good accuracy numerous experimental and DNA data [including, in 
particular, the data of papers [84,85]) on the mean velocity and 
Reynolds-stress profiles U(z) and x(z) = -(uw)(z)]. Obtained composite 
velocity profiles U{z) in a wide range of Re values agreed rather well 
with the available  data and also with the logarithmic  law within  the 
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traditional 'logarithmic layer' of z values (where the use of the 
conventional coefficients K = 0.41 and B = 5.25 did not lead in most of 
the cases to disagreement with the data). Moreover, in the case of 
pipe flows this profile U(z) agrees also well enough with Barenblatt's 
Eqs. (8), (9) but in another range of z values which includes the 
outer part of the 'logarithmic layer' and the inner part of the 'wake 
layer'. Since Panton found that these two laws are valid in different 
regions, he concluded that it is not appropriate to ask which of these 
two laws is correct. As to the boundary-layer flows, Panton came to 
conclusion that used by Barenblatt et al. method for determination of 
the most appropriate value of Re = U0A/v don't lead to values of 
C(Re) and a(Re) which make Eq. (8) to agree well with Österlund's 
experimental data (at greater length this conclusion is considered in 
the second document [92]). 

Finally, in the talk by Nagib et al. [91] it was stated that the 
experiments described in [85] were continued by the present authors 
in the range of very high values of Re =U08**/v exceeding 50 000. 
The new measurements showed that the mean velocity distribution 
in the overlap layer of the flat-plate boundary layer for these 
Reynolds numbers continues to be accurately described by the 
Reynolds-number-independent log law with the same as in [85] 
unconventional values of the coefficients K = 0.38 and B = 4.1. 

What may be said in conclusion of this lengthy many-sided 
discussion? It shows clearly that advocates of two different 
similarity models cannot convince each other in the correctness of 
their point of view. Both side refer to (often the same) experimental 
data trying to prove to opponents that these data confirm their 
model. This makes an impression that at present the reached 
accuracy of the available data on near-wall turbulent profiles is 
simply insufficient for the obtaining of a convincing unique 
conclusion about the real form of the mean-velocity profile in the 
intermediate layer of not-too-small and not-too-large values of z. 
However it seems also that great (and continued to grow) scatter of 
experimental values for the coefficients A, B and B(1) and for the 
limits of the logarithmic layer (cf., e.g., the strongly differing results 
of [84] and [85] which both asserted that their data are precise), 
contradicts to the idea of an universal overlap layer with logarithmic 
velocity profile having always the same constant coefficients. 
Barenblatt et al. [89] remarked in this respect that found in [85] too 
low value K = 0.38 of von Kärmän constant contradicts the 
logarithmic-law universality. Österlund et al. [90] in their answer 
noted   that  used  by them   inner   (i.e. lower)  limit  of the   logarithmic 
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layer corresponded best to their data but was much greater than its 
'traditional' value; moreover, their data also covered a wider range of 
high Re values than that used in earlier studies. According to [90], 
using only the part of their data which corresponded to 'traditional' 
low range of Re values and 'traditional' overlap-layer limits, the 
authors got the usual estimate K = 0.41. Does this mean that just the 
further increase of the used values of Re and of the lower limit of the 
overlap layer implies still greater value K « 0.44 found in [84]? In 
fact, the dependence of the value of K [and of other coefficients of 
laws (1) and (4)] on the range of Re-values and limits of the 
considered 'overlap layer' means that either these laws are not 
universal or the corresponding experimental data are inexact. If the 
first explanation is true, then the velocity shear dU/dz in the 
'intermediate layer' of a wall flow depends not only on u* and z but 
also on some other physical quantities which must be directly 
indicated. Note also that the conventional 'overlap-layer arguments' 
don't imply conclusions agreeing satisfactorily with the available 
data when these arguments are applied not to mean-velocity profiles 
but to more complicated statistical characteristics of wall turbulence 
(for more details see text printed in small type below). This remark 
also decreases the confidence in the universal validity of the 
uniquely  determined  logarithmic  law  for the  overlap-layer velocity. 

Let us now mention one more group of researchers who 
independently studied the mean-velocity profiles U(z) in near-wall 
turbulent flows. This group, headed by W.K. George, also modified the 
traditional 'overlap-layer similarity assumptions' and used a more 
complicated method for analysis of the nonclosed Reynolds equation 
for the mean velocity U(z) of a turbulent wall flow. Obtained by them 
results relating to zero-pressure-gradient boundary layers and to 
pipe (or channel) flows were summarized in papers [97] and [98], 
respectively. According to the indicated here new theory, Reynolds 
number strongly affects all flow regions; therefore the argument Re 
must be again included in the list of arguments of functions f(1) and 
f(2) on the right-hand sides of the wall and defect laws (2) and (3). 
This makes impossible the direct determination of the form of 
functions f(1) and f(2) in the 'overlap layer' and requires to use here 
some supplementary hypotheses. Proposed in [97,98] hypotheses 
implied that the velocity profile U(z) takes in the intermediate 
'overlap layer' quite different forms in the cases of boundary-layer 
flows and flows in pipes and channels: in the first case U(z) satisfies 
the power-law with respect to the variable z + a, and in the second 
case - the logarithmic law again with respect  to z   + a. (Here a   is an 
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auxiliary parameter describing the vertical shift of the coordinate 
origin and taking different values in different wall flows.) We have 
no possibility to consider here these rather unexpected results at 
greater length; note only that physical intuition (which may be 
incorrect) makes one to be surprised by cardinal difference between 
the near-wall flow structures in boundary-layer and pipe (or 
channel) high-Reynolds-number flows. It was also stated in [97,98] 
that found there results agree satisfactorily with the available 
experimental data. (This statement was confirmed also by Had-el- 
Hak [6] who found that results of [97] 'are elegant'.) The found 
agreement of quite different velocity-profile equations with the 
same data shows once more that at present the accuracy of the 
existing data does not permit to determine reliably the true forms of 
wall-flow  velocity profiles. 

Completing the discussion of the present situation concerning 
the choice of the most appropriate theoretical equation for the 
velocity profiles U(z) of steady turbulent wall-bounded flows one 
must say that at present there is no equation which will satisfy 
everybody and will be unanimously recognized as the best one. From 
this point of view, the situation now is even worse than it was up to 
the 1980s when the discovery of the logarithmic velocity-profile 
equation was unanimously considered as one of the most 
fundamental scientific achievements of the 20th century which 
solved forever the problem about the form of velocity profile in 
turbulent wall flows. Now it seems clear that the accuracy of the 
available experimental and numerical data is insufficient for the 
determination of the unique 'correct solution' of the problem. At the 
same time, the great scatter of the found values of logarithmic-law 
parameters and limits of its validity makes one to suppose that this 
law represents only a reasonable first approximation which may be 
useful for engineering practice but cannot be considered as a 
rigorously established physical law. Therefore, the old velocity- 
profile problem which tortured L. Prandtl, G.I. Taylor and T. von 
Kärmän in the first quarter of the 20th century, now again became 
actual and apparently requires supplementary studies of physical 
mechanisms leading to possible violations of the logarithmic law and 
to reliably detected violations of related similarity laws for higher- 
order  statistical  characteristics  of wall-bounded  turbulent  flows. 

Before the appearance of much more accurate experimental 
(and/or DNS) data (and even after it too), better understanding of the 
main features of the velocity profiles in various turbulent flows 
undoubtedly requires (and will require) more direct use of the 
physical  arguments   concerning  the mechanisms   of turbulent   mixing. 
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This is an arduous task: physics of turbulence phenomena is very 
complicated and even mysterious up to now, dynamic equations are 
nonclosed and requiring additional hypotheses. Therefore it is not 
surprising that all approaches discussed above did not use the 
Navier-Stokes equations of fluid dynamics at all. For this reason the 
attempt by Nazarenko with co workers [99] to consider some 
simplified physical mechanisms producing the near-wall turbulence 
with logarithmic (or power-law) mean-velocity profiles is worth to 
be mentioned. These authors studied near-wall turbulence produced 
by a weak small-scale external forcing. They found that the mean 
velocity profile of such forced turbulence is very sensitive to the 
properties of the initial near-wall vorticity penetrating into the outer 
flow regions. For the case of a simplified dynamic model derived 
from NS equations the authors found specific conditions guaranteeing 
the existence of an exact analytic solution of model equations 
corresponding to the logarithmic (or to power-law) velocity profile. 
Thus here for the first time it was shown that sometimes these two 
types of velocity profiles may be obtained under definite conditions 
from dynamic equations derived from the NS equations. Results of 
this work in fact stressed again that classical derivations of 
logarithmic law by Prandtl, Kärmän, Izakson, and Millikan in no way 
can be considered as the conclusive solution of the problem of the 
velocity profile of near-wall turbulent flows. Such derivations must 
be also supported by careful physical analysis based on dynamic 
equations which maybe will explain the interrelation between the 
power-law  and  logarithmic  velocity  profiles. 

Above only the mean-velocity profiles U(z) of the near-wall turbulent 
flows were considered. However any turbulent flow in addition to mean- 
velocity profile has also a lot of 'statistical characteristics of higher orders' 
such as higher moments, correlation and structure functions, spectra of fluid- 
dynamic fields, probability density functions (pdf) of turbulent fluctuations 
and so on. All these characteristics are peculiar just to given flow and 
knowledge of many of them may be necessary for solution of some important 
practical problems. However up to now the higher-order statistical 
characteristics of wall turbulent flows are poorly known since relating to 
them experimental data are either missing or are very scattered and 
unreliable. Moreover, the applications of the 'standard dimensional 
arguments' of wall-turbulence theory to the higher-order flow characteristics 
usually lead to results which agree with the available data much worse than 
results relating to mean-velocity profiles. Recall that the first violations of the 
'classical similarity laws' for the 'overlap layer' of near-wall turbulence 
which were detected by Townsend [69] and Bradshaw [70] (and confirmed b y 
Perry and Li [73]) concerned not the mean-velocity profile but profiles of the 
second-order moments <c?> and <v2>. Since the mentioned here similarity laws 
were based on the same seemingly obvious dimensional arguments which 
imply   the  logarithmic   velocity-profile   law,   the   discovery   of their   violations   is 
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very   important   for  future   studies   of  real   properties   of  near-wall   turbulence. 
It has been already mentioned above that Fernholz and Finley noted in 

the review [60] that the available mean-velocity data for zero-pressure- 
gradient boundary layers agree quite satisfactorily with the logarithmic laws 
(1), (4) [and more general laws (2) and (3)] but the data relating to higher 
moments of velocity fluctuations are very scattered and disorderly. Note that 
nevertheless, in early reviews [61,62] an attempt was made to collect some 
preliminary (not too reliable) data relating to functions fklm(zK./v), gklm(z/L) 
and constants aklm for the cases where k+l+m = 2. In particular, it was 'stated 
there that apparently a200 - 5.5, aQ20 « 3, a200 « 1, while am = -1, aUQ = aon = 0. 
However, later it was stressed in [100] that in fact much data disagree with 
these estimates [and with general equations (5)-(7) too]. As an example the 
atmospheric data by Högström [101] and Smedman [102] were presented in [100] 
which show that in the near-earth logarithmic layer of the atmosphere 
(u2),/2/u* often decreases and <w2)1/2/u. increases with height in direct 
contradiction to Eq. (7). Many more recent data relating to various higher- 
order statistical characteristics of near-wall laboratory or atmospheric 
turbulence may be found, e.g., in the papers [103]-[107]. These data show that 
similarity laws (5)-(7) (and similarity laws of the same type corresponding to 
other characteristics of near-wall turbulence) often disagree with the 
experimental data or, in the best case, may be considered only as some rough 
approximations. (In particular, the dependence of statistical characteristics of 
turbulence on the value of Re was often observed in both the inner, near-wall, 
and the outer flow regions.) Therefore the search for similarity laws 
adequately describing higher-order statistical characteristics of wall 
turbulent flows represents a very difficult problem requiring much further 
work. 

3.2.   Kolmogorov's Theory of Locally Isotropie Turbulence 

Kolmogorov's theory of 1941 (so-called K41 theory, or briefly 
K41) was first stated in two short notes (of 4 and 3 pages) in 
"Doklady Akad. Nauk SSSR" ('Reports of USSR Acad. Sei.'). These notes 
undoubtedly represented one of the highest achievements of the 
theory of turbulence which, luckily, became very early known in the 
West. (Up to 1946 Russian "Doklady" were simultaneously published 
under the title "C. R. Acad. Sei. URSS" in translations to one of three 
main Western languages. One day in the early 1940s young 
Cambridge student G.K. Batchelor by chance found these "C. R." in the 
London library, read Kolmogorov's notes, at once understood their 
enormous importance and became an urgent popularizer of this 
work.) So, seven printed pages glorified A.N. Kolmogorov as the 
brilliant physicists and mechanicians, while earlier he was known 
only as a famous mathematician. (In fact K41 was the unique 
achievement in the field of turbulence which was seriously discussed 
as a work worth the Nobel prize in physics, and probably Kolmogorov 
would get the Nobel prize if he did not die too early.) 

Kolmogorov's theory   was based   on very   clear  and   convincing 
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physical ideas represented in the form of two hypotheses concerning 
the mechanisms producing the small-scale turbulent fluctuations. 
When this theory was developed by Kolmogorov, there were no 
experimental data to compare with conclusions following from his 
theory; all of them have the character of pure predictions. Only later 
numerous experiments confirmed the perfect validity (with the 
attainable then accuracy) of the main results of Kolmogorov's theory 
(see, e.g., the books [2,66,95]). Let us stress, however, that the K41 
theory did not use at all the dynamic NS equations. In fact, here only 
intuitive physical reasons were used where the principal part was 
again played by dimensional arguments. Physical intuition prompted 
Kolmogorov the idea that the small-scale turbulence fluctuations are 
produced by a cascade process of energy transfer from the mean 
flow and the large flow structures to more and more smaller such 
structures. If so, then it was natural to assume that in the case of 
very high Reynolds numbers, where cascade process includes many 
steps, this process must make the small-scale turbulence 
(corresponding to distances r much smaller than the typical length 
L of the large-scale flow nonhomogeneities) locally homogeneous, 
isotropic and depending, in the case of incompressible fluid, only on 
two dimensional physical parameters. These two parameters are the 
mean rate e of the energy transfer over the cascade of eddies (which 
must be equal to the mean rate of viscous dissipation of the kinetic 
energy of velocity fluctuations) and the kinematic viscosity of fluid v. 
And dependence of only two parameters allows to use dimensional 
analysis very effectively. In particular, dimensional considerations 
imply the following result 

En(k) = Ae2/3k-5/3(|>(kTi),    where n. = (v3/e)1/4, <|>(0) = 1, (11) 

En(k) is the one-dimensional spatial spectrum of the streamwise 
velocity fluctuations, k - the streamwise wave number, r\ - 
Kolmogorov's length scale (which has been already met above when 
the range of length scales of vortical structures was discussed), and A 
and <|> are some universal constant and function. Eq. (11) is valid in 
flows with large values of Re for k » 1/L (since only such values of k 
correspond to small-scale turbulence) and it follows from this 
equation that in the inertial range 1/L«k«l/T| of wave numbers k 
spectrum  Eu(k) has the following simple form: 

E„(k) = Ae2/3k"5/3 = Bk"5/3, where    B = Ae"5'3. (11a) 
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Eq.(lla) represents the famous five-thirds law determining the 
form of the velocity spectrum in the inertial range of wave numbers; 
this law is one of the most important conclusions following from K41 
theory. 

First attempts of experimental checking of K41 theory led to 
confirmation of theoretical predictions; in particular, it was found 
that velocity spectra of atmospheric turbulence (where Re always 
takes very high value) are almost always proportional to k"5/3 in a 
wide range of wave numbers. However in the late 1950s the 
researchers working at Moscow Institute of Atmospheric Physics 
noted that nevertheless some results of their measurements disagree 
with original Kolmogorov predictions. The first found disagreement 
concerned the coefficient B of Eq. (11a). According to K41, at a fixed 
point of a steady turbulent flow coefficient B must have a constant 
value. However, real measurements at fixed points of the Earth's 
atmosphere showed that B fluctuates very strongly - a new spectral 
measurement made slightly later (say, after 15-20 minutes) gave 
again a spectrum of the form (11a) but coefficient B often took then 
quite   different  value. 

This observation led to formulation by Obukhov and 
Kolmogorov in 1962 of a new, modified, theory of small-scale 
turbulence, which is now often called the K62 theory (for more 
details see [2] or [66], Sec. 25). The main idea of it consists in the 
replacement of the mean dissipation rate e by the spatially averaged 
local dissipation rate er. Here r = 2rc/k is the wave length 
corresponding to wave number k, and £r is obtained by averaging of 
the local energy dissipation rate e(x,t) over a spherical volume of 
points x having the radius r/2 and the center at the point to which 
the considered  spectrum Eu(k)   corresponds. 

Let us consider not the one-dimensional spectrum En(k) but 
more simple velocity structure function    of the second order: 

D2(r) = <[u,(x + r) - Ul(x)]2),    r = Irl (12) 

(here ut is velocity component in the direction of vector r and, as 
usual, angular brackets denote ensemble averaging). Then, according 
to K41 for r « L 

D2(r) = Ce2/3r2/3f2(r/r|), (13) 
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where f2 is an universal function, f2(°°) = 1, and C ~ 4A is an 
universal constant. From (13) it follows that in the inertial range L > 
r » T) of distances r Kolmogorov's two thirds law   of the form 

D2(r) = Ce2/3r2/3 (13a) 

is valid. On the other hand, according to K62 theory for r « L 

D2(r) = C<(er)
2/3>r2/3f2(r/Tir),   where nr = v3/4(er) "1/4. (14) 

In the inertial range L » r » t|r (the length r|r fluctuates but usually it 
is of the same order as r\) f2(r/ T|r) = 1, and hence 

D2(r) = C((er)
2/3)r2/3,   where <(er)

2/3> * <er)
2/3 = e2/3. (15) 

According to Eq. (15) dimensional coefficient D = C((£r)
2/3> of the two- 

thirds law may fluctuate producing variations of the value of the 
dimensionless coefficient C0 = D/e2/3 (where e is strictly constant 
'mean dissipation rate'). The same arguments may explain the 
observed variability of the coefficient B of the law (11a). 

In his work of 1962 Obukhov assumed that er has lognormal 
probability distribution with variance depending on r and used this 
model for a crude estimation of ((£r)

2/3>. Kolmogorov in his version of 
K62 theory, sketched some general similarity hypotheses which 
generalized the hypotheses used in K41 (namely, instead of the 
assumed in K41 local isotropy of the velocity field v(x,f) he 
suggested to assume that the probability distributions of the ratios of 
velocity differences in two pairs of points are invariant with respect 
to all motions and mirror reflections of this group of points). 
However, this last hypothesis was never developed to a state of a 
completed theory. Moreover, Kolmogorov also proposed to use 
Obukhov's lognormal assumption not only in Eq. (15) but also in the 
more general equation for the structure function Dn(r) of the 
arbitrary order n (defined by presented below Eq. (16)). This 
proposition implied the following approximate estimate of the form 
of the velocity structure functions of arbitrary orders in the inertial 
range: 

Dn(r) = <[Ul(x + r) - u^x)]") = Cn(x)(er)n/3(L/rfn(n-3)/18. (16) 

Here e = (er) is the mean rate of the energy dissipation, \i is an 
universal   constant,   and   Cn(x) depends   on the   flow   macrostructure 
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(and is practically constant in regions of a size much smaller than L). 
Old K41 theory corresponds to the case where Cn are universal 
constants and \i = 0; note also for n = 3 both theories imply the same 
result. 

At present it is clear that the lognormal assumption accepted in 
1962 by both Kolmogorov and Obukhov was only a crude 
approximation. [In fact both authors also considered it as only an 
example allowing to illustrate the possible influence of the 
dissipation-rate intermittency on the inertial-range spectra and 
structure functions]. After 1962 a number of attempts were made 
by different authors to replace this assumption by some more 
general model of the self-similar cascade process of sequential 
breakdown of smaller and smaller eddies (the early stage of this 
development was summarized in Sec. 25 of the book [66]; see also 
[2]). From all this material only the result due to Novikov [108] will 
be presented here. Novikov considered three similar to each other 
spatial volumes (let us say spherical for definiteness) of radii p < r < R 
contained within each other and corresponding to them three 
averaged dissipation rates ep, er and eR (which are fluctuating random 
variables). He postulated that self-similarity of the cascade 
breakdown process is represented by the fact that if all three radii p, 
r, and R belong to the inertial range of lengths, then the random 
ratios ep/er and zJeR are statistically independent from each other and 
have probability distributions depending only on ratios p/r and r/R, 
respectively. Then he showed that from such self-similarity it follows 
that in the inertial range of distances r 

Dn(r) = C^er)"73 (!)«■ ~r?»,       £ = n/3 + £,. (17) 

A number of measured in various turbulent flows or determined from 
numerical simulations values of scaling exponents £n corresponding to 
different values of n was found during the 1980s and 1990s, in particular, by F. 
Anseimet et al. (/. Fluid Mech., 140, 60-89, 1984), R. Benzi et al. (Phys. Rev., 
E48, R29-R32, 1993), G. Stolovitzky et al. (Phys. Rev., E48, R3217-R3220, 1993), 
and J.A. Herweijer and W. van de Water, Phys. Rev. Lett., 14, 4651-4654, 1995). 
The first analytical models of the scaling-exponent function £n = f(n) was 
proposed by Kolmogorov in 1962 [see Eq. (16)]; its agreement with the 
subsequently found values of the exponents £n proved to be quite poor. Note 
that according to Eq. (16) %2 is positive and apparently small (\i is positive b y 
definition but hardly large), ^3 =0, and £n are negative for n >3 and \%n\ grow 
very quickly with n. The available data shows that the signs of corrections ^n 

were predicted by Eq. (16) correctly (but %2 is so small, that it is sometimes 
assumed to be zero), but for higher-order corrections with n >3 values of l^„l 
are always much smaller than they must be according to Eq. (16) 
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Later many other 'theoretical models' of scaling exponents 
corresponding to various particular self-similar models of the cascade process 
of eddy breakdowns were given by a number of authors; the papers by U. 
Frisch et al. (/. Fluid Mech., 87, 719-736, 1978), R. Benzi et al. (see G. Paladin and 
A. Vulpiani, Phys. Rev., A35, 1971-1973, 1987), S. Kida (J. Phys. Soc. Japan, 60, 
5-8, 1990), Z.-S. She and E. Leveque (Phys. Rev. Lett., 72, 336-39, 1994), B. 
Dubrulle (Phys. Rev. Lett., 73, 959-962, 1994), Z.-S. She (Progr. Theor. Phys. 
Suppl., 130, 87-102, 1998), J.Jimenez (J. Fluid Mech., 409, 99-120, 2000), the 
book [2] and short survey by O.N. Bortav (Phys. Fluids, 9, 1206-1208, 1997) 
represent only a small part of the material relating to this topic. Many of the 
proposed quite different analytic models led to results which agreed more or 
less satisfactorily with available experimental and numerical estimates of the 
exponents £n, if the model parameters were appropriately chosen. This 
agreement shows again that up to now available data on high-Reynolds- 
number turbulence very often do not allow to select uniquely the best of the 
various   proposed   theoretical   models. 

Let us now made some general comments. The K41 theory was 
based on definite hypotheses which were not (and apparently cannot 
be) proved rigorously (i.e., derived directly from equations of fluid 
mechanics). However, these hypotheses seemed, at least, to be quite 
natural and consistent with physical intuition. In contrast, the 
reformulation by Obukhov and Kolmogorov of K41 theory as a new 
K62 theory is far less evident and physically convincing. Of course, 
the Kolmogorov-Obukhov's attempt of crude estimation of the 
intermittency effect with the help of replacement of the constant 
dissipation rate e by depending on the length r fluctuating 
characteristic er was a brilliant piece of work, but it was based on a 
plausible guess only and could not be considered as an adequate 
physical theory. Therefore it was only natural that at the end of his 
paper of 1962 Kolmogorov set up a problem of elimination of the 
quantity er from K62 theory and proposed to use for this purpose two 
new similarity hypotheses remarking simultaneously that apparently 
they must be also supplemented by something else. However, the 
realization of this program is clearly a difficult task and this was not 
done yet. A partial progress was connected with the appearance of 
the multifractal formalism of Parisi and Frisch (see [2] about it) 
where er was not mentioned explicitly. However this formalism 
represents some idealization of the real situation and it requires the 
introduction  of  some   supplementary  hypotheses. 

Differing from K62 modification of the old K41 theory was 
proposed by Barenblatt and his co-authors (see, e.g., [109-111]). In 
the paper [109] with Goldenfeld based on some general arguments 
and the analogy with the problems concerning the near-wall velocity 
profile   and   some   physical   problems   of quite   different   origin   the 
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authors assumed that maybe more appropriate correction of the 
classical two-thirds law (15) of K41 than that of Eq. (17) with n = 2, 
will be given by an equation of the form 

D2(r) = C(lnRe)(er)2/3(f )a(lnRe) (18) 

where L has the same meaning as in Eq. (17) but now coefficient C2 = 
C and exponent £2= a are not constants but functions of InRe (i.e., 
slowly changing functions of Re). Expanding these functions in 
powers of a small parameter (InRe)1, the authors assumed that oc(Re) 
= aj/InRe + 0[(lnRe)"2], QlnRe) = C0 + C/lnRe + 0[(lnRe)-2] (constant 
term was omitted in the series for a(Re) to guarantee the validity of 
the K41 scaling when Re '-» «>). For crude estimate of the function 
QlnRe) the data by Praskovsky and Onsley [112] were used. These 
authors combined results of spectral measurements of velocity 
fluctuations in the atmospheric surface layer and in two high- 
Reynolds-number wind-tunnel flows to verify the possibility of 
dependence of the Kolmogorov constant C = C2 on the value of the 
Reynolds number Rex = u'Uv (where u' = (u2>1/2 is the root-mean- 
square value of the streamwise, corresponding to Ox direction, 
velocity fluctuation and h= [<u2)/(au/8x)2]1/2 is the so-called Taylor 
length microscale). According to [112] values of the coefficient C in 
eight flows with 2xl03 < Rex < 12.7x103 are weakly decreasing with 
Rex [approximately as (Rex)01]. This dependence on Re differs from 
that assumed by Barenblatt and Goldenfeld. However, since the 
results of [112] had low precision (note that the summary tables of 
the measured C-values collected in [113,114] showed that these 
values are very scattered but gave no indications of their 
dependence on Re), it was concluded in [109] that these results may 
be also crudely approximated by the proposed in this paper equation 
for C(lnRe). As such approximations even two version of proposed in 
[109] equation were considered: one with C0 = 0 and the other with C0 

* 0. Note that if C0 * 0, then equation (18) implies that at Re ->« 
limiting regime of 'fully developed turbulence' is realized where 
Kolmogorov's 'two-thirds law' is valid, while if C0 = 0, then such 
regime don't exist. 

Later Barenblatt and Chorin [83,110,111] generalized Eq. (18) 
and given above approximate models of the functions oc(Re) and 
C(Re) to the case of the velocity structure   functions  Dn(r) of orders  n 
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> 4, suggesting the following approximate equation for values of 
these functions in the inertial range T| « r « L: 

Dn(r) = (C. + ^/lnRe)(er)n/3(yr»/lnRe
/  n = 4, 5  (19) 

where Cn, C|,and«n are some constants. (For n = 2 proposed in [109] 
equation of the same form as (19) was used; as to the case where n = 
3, here the known Kolmogorov's equation D3(r) = -(4/5)er was used 
in the inertial range of lengths r.) 

Eqs. (18) and (19) correspond to definite concept of the passage 
to the zero-viscosity limit in fluid mechanics (see, e.g., [110,111]). 
Recall that according to the K62 small-scale spatial intermittency of 
the field e(x,f) leads to the appearance of small (but finite) changes of 
'classical' spectral and structure-function exponents -5/3 and 2/3. 
(These changes have the same absolute value but opposite signs: 
they diminish the spectral exponent but increase the structure- 
function exponent.) At the same time intermittency also produces 
changes of the form (17) of exponents describing the forms of 
structure functions of higher orders in the inertial range of lengths r. 
This prediction of K62 was widely discussed during the last two 
decades [see, e.g., papers cited after Eq. (17)]. However it was also 
sometimes contested (e.g., in [115,116]), and Eqs. (19) (and similar 
equation for n = 2) also corresponds to the assumption that 
'intermittency corrections' of the inertial-range exponents tend to 
zero as Re -><». (Just the acceptance of this assumption forced the 
authors to require that ct(Re) -» 0 as Re ->°o.) Since the available 
experimental and numerical estimates of 'intermittency corrections' 
are scattered and small, the reliable verification of Eqs. (18), (19) is 
apparently impossible at present. Let us consider, for example, the 
situation relating to the 'intermittency correction' £2 corresponding to 
the second-order structure function D2(r). The first experimental 
estimate of £2 given in [117] was close to 0.04, while at present the 
available non-zero estimates cover the range from 0.05 to 0.02, but 
zero value is also sometimes accepted. (In particular, Praskovsky and 
Onsley [112] found that £2 is close to zero at all inspected by them 
values of Rex, and there are also other authors who supposed that the 
available data are insufficient for proving that £2 * 0.) Barenblatt et 
al. [118] tried to use for the verification of their assumption about 
the dependence of a = £2 on Re the data by Benzi et al. [119] who 
measured   the  values   of functions   D2(r) and  D3(r) in four  different 
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flows with Re = 5000, 6000, 18 000, and 300 000 (where different 
definitions of Re were used for different flows). In [119] it was found 
that to the summary collection of all obtained data corresponded the 
practically constant correction £2=0.03. Barenblatt et al. separated 
data points corresponding to individual experiments and their 
processing of four separate (rather small) groups of points led to 
conclusion that the corrections £2 differ in the cases of different 
experiments decreasing with the growth of Re and possibly tending 
to zero as Re ->°o. However, Benzi et al. in their reply [120] to the 
note [118] disagreed with such interpretation of their data. At the 
beginning they rightly noted that from a theoretical point of view, 
the dependence of the exponent £2 on Re and its convergence to zero 
as Re ->°° does not seem impossible. However then they stated that 
their experimental data, and also analyzed by them additional data 
of some other authors covering a larger range of high Re values, 
show that ^2«0.03 in all studied flows and it does not change with the 
increase of Re. Moreover, it was also noted in [120] that according to 
data presented in [121] the higher-order scaling exponents £n with n 
< 7 also don't depend on Re. (In [121] an attempt was made to collect 
results of approximate evaluations of values of £n, n < 7, based on 
data of seven experiments corresponding to quite different turbulent 
flows and values of Rex between 300 and 5000.) 

Of course, the experimental results presented in [120,121] 
cannot be considered as a strict proof of the independence of scaling 
exponents £n and £n = £n +n/3 on Re. All the measurements of these 
exponents are rather crude and their results may depend on the 
choice of the 'inertial range' where the structure functions satisfy the 
power laws. Note also that in [119-121] the scaling exponents were 
determined indirectly basing on the 'extended self-similarity' (ESS) 
hypothesis by Benzi et al. [119] generalizing the concept of the 
inertial range where structure functions Dn(r) satisfy power laws 
(17). Eq. (17) implies that in the inertial range any function Dn(r) is 
proportional to the function Dm(r) raised to the power C,JC,m. ESS 
stated that the proportionality of Dn(r) to [Dm(r)]f"/?M is often valid 
over an unexpectedly wide range of scales r extending far beyond 
the small-scale limit of the inertial range. [In practical applications it 
is usually assumed that m = 3; then £m=l and within the inertial 
range the ESS representation is equivalent to that of Eq. (17).] The 
use of the ESS method allows to simplify and make more easy the 
determination of exponents £n from the experimental data, but in 
principle   found   by   this   method    values   of  £n may   be   somewhat 
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affected by the extension of the considered range of r values. 
However, even more important is the absence of any explanation of 
the ESS phenomenon. ESS clearly represents a surprising similarity 
property which must be somehow connected to similarity of 
organized structures determining the shapes of structure functions in 
the covered by ESS range of lengths r. This generalization of the 
following from K62 Eq. (17) may be compared with proposed by 
Barenblatt, Chorin and Goldenfeld Eqs. (18) and (19) which validity 
also must reflect some unknown symmetry features of flow 
structures determining the velocity differences. Moreover, Eq. (17) 
by itself is also a similarity relation which derivation in the 
framework of K62 is based on the use of some unproved and 
physically somewhat vague hypotheses. Therefore it is not surprising 
that Sreenivasan and Dhruva [122] even tried to investigate whether 
the scaling (17) really exists in high-Reynolds-number turbulence or 
not. Their measurements in the atmospheric surface layer at 104 < 
Rex < 2xl04 led them to the conclusion that apparently in 
atmospheric turbulence there exists an inertial range where Eq. (17) 
is valid but its validity is often disturbed by velocity shear and 
finiteness of Re (see also the discussion of the results of the paper 
[127] below). However, the paper [122] did not clarify the origin of 
the  similarity law  (17). 

One more generalization of the K62 scaling (17) for the case of 
n = 2 was proposed by Gamard and George [123]. According to their 
theory the scaling exponent \2 and Kolmogorov's coefficient C = C2 

depend on the Reynolds number Re and |2 tends to zero while C 
tends to a non-zero constant C0 as Re -» <*>. Thus, this theory stated 
that the 'classical' turbulent regime of K41 theory is valid in the 
limiting case of very high Reynolds numbers. The authors applied to 
the considered by them problem hypotheses of the same type as 
those used in the papers [97,98] for the evaluation of velocity 
profiles in turbulent pipe, channel and boundary-layer flows. 
Obtained in [123] results proved to be in good agreement with the 
experimental results by Mydlarski and Warhaft [124] relating to 
spectral measurements in the isotropic turbulent flow produced in a 
relatively small wind tunnel by an 'active grid' generating intensive 
turbulent fluctuations. The data by Mydlarski and War haft 
corresponded to a limited range of not too large Reynolds numbers; 
therefore even the existence here of the intermediate range of wave 
numbers k where En(k) °= k"a, a>0, was somewhat unexpected. Note 
also that in this case the found corrections which must be added to 
the  'Kolmogorov exponent' -5/3 prove  to be positive while according 
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to K62 the intermittency corrections of the spectral exponent are 
always negative (equal to -£2). For this reason the results of this 
work cannot be compared with the results discussed above which 
were relating to flows with much higher values of Re. 

The present state of the considered above investigations of the 
K41 theory and of the similarity laws for near-wall turbulent flows, 
produces an impression that at the end of the 20th century the 
fundamental achievements of Prandtl, Kärmän, Kolmogorov and 
other giants laying, seemingly for ever, the foundations of the 
modern theory of turbulence, began to stagger producing doubts and 
the feeling of uncertainty. Thus, at present the theory of turbulence 
seems to be more neglected than it was in the middle of the 20th 
century when the great discoveries of the 1930s, 1940s and 1950s 
produced universal enthusiasm. Let us nevertheless hope that arising 
difficulties will be get over and will lead to great progress in 
understanding of turbulence phenomena in the initial part of the 
21st   century. 

4. Concluding    Remarks;    Possible       Role      of 
Navier-Stokes       Equations 

It has been already stressed above that both the theory of 
logarithmic layer of wall-bounded fully turbulent flows developed 
by Kärmän, Prandtl, Izakson, and Millikan in the 1930s and 
Kolmogorov's K41 theory of locally-isotropic turbulence were based 
on some seemingly plausible physical hypotheses and dimensionality 
consideration, while the exact NS equations of fluid dynamics were 
not used there at all. Both these theories were shortly after their 
appearance confirmed by seemingly faultless experimental data, 
became very popular and were unanimously accepted as a final truth 
by scientific community. It is worth noting that physical basis of the 
K41 theory at first stimulated enthusiasm only within the 
community of physicists, while many fluid mecanicians were much in 
doubt. The closeness of this theory to physical manner of thinking 
was reflected in a remarkable fact that this theory was later 
independently developed also by two famous physicists, both the 
Nobel-prize winners, namely by L. Onzager (in 1945) and W. 
Heisenberg (in 1947). Moreover, Kolmogorov's theory was first 
included in textbooks also by famous physicists - in courses of the 
continuum mechanics written by L. Landau in Russia (then USSR) and 
by A. Sommerfeld in Germany as parts of the general courses of 
theoretical  physics  in many  volumes.  However  later  the  K41 theory 
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was accepted by everybody and became an important part of 
modern  fluid  mechanics. 

When it was found in the late 1950s that some of the results of 
K41 disagree with the data of spectral measurements in the lower 
atmosphere, Obukhov and Kolmogorov developed a modified K62 
theory. As it was told above, this new theory included some 
description of the influence of the external length scale L (equal to 
the typical length of large-scale flow nonhomogeneities) on the 
small-scale turbulence but preserved the assumption about the 
spatial homogeneity and isotropy of turbulence within small spatial 
regions of diameters 1 « L. This assumption was also left inviolable in 
the subsequent modifications of K62 by Barenblatt et al. and some 
others and in numerous studies of cascade models of small-scale 
intermittency and of scaling exponents (the careful studies [125] of 
anisotropic contributions to structure functions of various orders and 
to their scaling laws were rare exceptions in this respect). However, 
now there is a lot of data showing that the fundamental Kolmogorov's 
assumption about the isotropy of turbulent fluctuations of scales 1 < 
L    in any high-Reynolds-number flow is quite often violated. 

Let us note, for example, that the local isotropy implies that the 
cospectra E^k) of velocity components ut and uj9 where i * j, must 
vanish in the inertial range of wave numbers, i.e., at Ikl »2it/L. 
However in the lower atmosphere, where Re takes very high value, 
the cospectrum E13(k) of the horizontal (in the mean-wind direction) 
and vertical wind components always takes non-zero values in the 
range of values of k where spectra Eu(k) and E33(k) are proportional 
to k"5/3. (Cospectrum E13(k) decreases in this range approximately as 
k7/3, i.e. faster than spectra En(k) and E33(k) but not fast enough to 
become negligibly small; see, e.g., [126]). The simultaneous validity of 
K41 theory for En(k) and E33(k) and non-validity for E13(k) requires 
special explanation which is lacking up to now. 

In addition to this, Shen and Warhaft [127] measured recently 
a number of small-scale characteristics of velocity fluctuations in a 
homogeneous shear flow (with constant shear dU/dz where U is the 
mean velocity) behind an active grid. These measurements covered 
the range 100 < Re^<1100 of high enough Reynolds numbers Rev 

For the  normalized moments  of streamwise-velocity  derivative  3u/9z 

S2m+i = <Ou/az)2m+1>[<Ou/3z)2> (2m+1)/2]"1 (20) 

they found that S3 is decreasing with Re^ (and possibly tends to zero 
as Rex-»<*>), while S5 does not decrease  with Rex (and is close to 10 at 
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R&x~ 1000), while S7 increases with Rex. These results clearly show 
that studied turbulence is not locally isotropic in the dissipation 
range of lengths (since at local isotropy all moments Sn of odd orders 
n must vanish). At the same time it was found that lateral structure 
functions Dn(r) = <[u(x,y,z+r) - u(x,y,z)]n> of odd orders n = 3, 5, and 7 
take non-zero values in the inertial range of lengths r (i.e., for TJ «r 
« L); hence the studied homogeneous-shear-flow turbulence is 
anisotropic also in the inertial range of lengths. Thus, results of [127] 
show that the shear-flow turbulence is locally non-isotropic, at least 
to Rex ~ 1000, and demonstrates no tendency to become isotropic at 
higher values of Rev Here again the question arises how the 
discovered local anisotropy can be combined with the validity of the 
ordinary laws of two and five thirds which was confirmed by data 
relating  to  very  different high-Reynolds-number shear flows. 

Strong deviations from the predictions of K41 theory were in 
fact first detected in studies of small-scale fluctuations of 
temperature (or other passive scalars) in high-Reynolds-number 
turbulent flows.2 In particular, at the end of the 1960s it was 
discovered that the skewness of temperature derivative ST = 
<(dT/dx)3>/[<(dT/dx)2)]3/2 is different from zero (being of order 1) in 
the atmospheric flows with very high values of Re, although for 
locally-isotropic temperature fluctuations ST = 0; see, e.g., [128]. (This 
excellent survey of the modern studies of passive-scalar fluctuations 
in turbulent flows contains a long list of references. This fact allows 
us to omit here all references to papers on this subject, with the 
exception of very recent papers [129] appearing after the publication 
of [128].) Later it was found that ST practically does not depend on 
Re, i.e. it takes rather high values in all flows. Moreover, also the 
structure   functions   of  temperature 

DT>n(r) = <[T(x + r) - T(x)]n>, r = |r|, (21) 

of odd orders n=2m+l were found to be different from zero, though 
the local isotropy implies that all these functions must vanish. There 
were many attempts to explain these violations of the local isotropy 
of temperature    fluctuations by  the influence  of 'temperature   ramps' 

22 Generalization of the K41 theory to temperature and other scalar fields (for simplicity, only 
temperature field will be mentioned here) was carried out independently by A.MObukhov and 
S. Corrsin in 1949-51; see, e.g., [66], Chap. 8. It was found, in particular, that the temperature 
structure functions and one-dimensional spectra in the inertial ranges of lengths and wave 
numbers satisfy the same two-thirds and five-thirds laws as structure functions and spectra of 
velocity. 
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(where slow temperature growth is suddenly replaced by very rapid 
decrease or vice versa) and some other strongly asymmetric large- 
scale temperature structures. However, these attempts were not fully 
successful and also the origin of the asymmetric temperature 
structures in scalar turbulence remains enigmatic up to now. Let us 
note in this respect described in [128] results of the numerical 
simulation by M. Hölzer and ED. Siggia of the development of 
temperature fluctuations in a homogeneous Gaussian velocity field 
without any appreciable structures accompanied with a constant 
gradient of the mean temperature. It was found that in this case the 
temperature 'ramp structures' of unknown origin also appeared 
regularly. In any case, the available at present data relating to small- 
scale temperature fluctuations show that Kolmogorov's assumption 
about the isotropy of small-scale turbulent fluctuations in all flows 
with high enough Reynolds (and Peclet) numbers is usually invalid in 
the real flow  turbulence. 

Detected at the end of the 20th century strong deviations of the 
results of careful measurements of turbulent-flow characteristics 
from the previous predictions of great scientists are very disturbing 
for all modern fluid mechanicians. These deviations make highly 
desirable the comparison of the old theoretical results, based on 
physically convincing but unproved hypotheses, with conclusions 
following directly from rigorous dynamic equations of fluid motions. 
Unfortunately, this natural desire cannot be satisfied easily since the 
derivation of the specific results relating to high-Reynolds-number 
fluid flows from the dynamic equations met with unexpected 
resistance. Below, as everywhere above, only the incompressible 
fluid flows satisfying the Navier-Stokes equations will be considered. 
Very complicated properties of these equations have been already 
noted earlier, and now this complexity becomes especially evident in 
view of some recently appearing new curious developments relating 
to this subject. 

In the Introduction to these lectures the so-called "Physics 
Problems for the Next Millennium" have been already mentioned. Let 
us now explain that the appearance of these problems was 
stimulated by publication slightly earlier by the Clay Mathematics 
Institute of a list of seven "Mathematics Millennium Prize Problems" 
(first announced during the "Millennium Meeting" of mathematicians 
at the College de France in Paris in May 2000). It was announced 
there that the solution of any of these problem will be rewarded by a 
prize of $1 million (see [130] and http://www.claymath.org/prize_ 
problems). Clay Institute Problems were considered by their authors 
as the continuation   of the famous  "Hubert's Problems"   - a list of 2 3 
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then unsolved problems set up by the famous German 
mathematician D. Hubert at the International Mathematical Congress 
of 1900 in Paris for solution in the 20th century. For the subject 
discussed here it is only of importance that seven Clay Institute Prize 
Problems include a problem called "Navier-Stokes Equations". A short 
explanation accompanying the problem title at the internet 
announcement states that "Our understanding of the Navier-Stokes 
equations remains minimal. The challenge is to make substantial 
progress toward a mathematical theory which will unlock the secrets 
hidden in these equations." This is somewhat vague formulation for a 
problem whose solution is estimated in one million dollars, but it is 
clear that it is supposed here that the solution must explain the 
inexplicable features of fluid flows, both laminar and, especially, 
much more mysterious turbulent. Brief summary of the same prize 
problem in [130] was expressed as follows: "Prove or disprove the 
existence and smoothness of solutions to the three-dimensional 
Navier-Stokes equations (under reasonable boundary and initial 
conditions)". A little more detailed discussion of this problem by Prof. 
C.L. Fefferman accompanying the internet notice paid again most 
attention to unsolved problems relating to the existence, smoothness, 
and possible singularities of the solutions of three-dimensional NS 
equations. Moreover, in even more detailed discussion of this 
problem by P. Constantin [131] much attention was again paid to 
existence problems for smooth solutions of the NS (and Euler's, where 
v = 0) equations, but at the same time some problems on the 
asymptotic behavior of solutions at large times (closely connected 
with the secrets of flow instability) and on mysteries of turbulence 
were also briefly described there. All this is told here to pay 
attention of the readers to the remarkable fact that mathematical 
problems of fluid motions were included in a short list of major 
unsolved mathematical problems which the science of the 20th 
century left for solution to the 21st century. 

Let us now revert to possible applications of the NS equations 
to studies of turbulence phenomena. A number of difficulties met on 
this way was discussed by L'vov and Procaccia in 1997 (see [132]). 
These two scientists were long trying to develop the hydrodynamic 
theory of turbulence and, in particular, to apply the NS equations to 
the proof of the existence of a range of the power-law behavior of 
the velocity structure functions and to the estimation of the 
corresponding scaling exponents £n (see, e.g., the second paper in 
[132] and the cited there papers on this subject). Their work showed 
clearly  how   complicated   this   problem   is and   how  difficult   it is to 
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obtain here even a modest success. Another very interesting 
discussion of the problems arising in the hydrodynamic theory of 
turbulence was published by C. Foias [133] also in 1997. In the title 
of the paper [133] it was asked: "What do the Navier-Stokes 
equations tell us about turbulence?", and in the first sentence of it 
the following answer was proposed: "Until the early eighties, very 
little; since then, quite a lot." It seems, however, that this answer is a 
little too optimistic, though it is impossible to neglect serious 
successes in this field reached during the last twenty years. 

The main purpose of Foias in [133] was to make an attempt to 
find rigorous proofs based on the NS equations of some remarkable 
results of the turbulence theory which were earlier derived from 
some combination of the physical intuition with the purely empirical 
evidence. As the appropriate examples of such theoretical results 
Kolmogorov's (relating to K41) and Kraichnan's [134] inertial-range 
laws for three-dimensional (3D) and two-dimensional (2D) 
turbulence were chosen. (Kraichnan's 2D results were also included 
since the 2D NS equations are much simpler than the 3D ones.) Some 
elementary model of the cascade process of energy transfer from 
larger to smaller eddies was included in Foias' analysis but all 
intermittency effects were fully neglected. Under this condition the 
author was able to give practically rigorous proofs of the K41 and 
Kraichnan's k"5/3 and k"3 laws for the energy spectrum E(k) in the 
inertial ranges of wave numbers and of the equations determining 
the dissipation length scales in three and two dimensions. However, 
these proofs proved to be rather complicated and they nevertheless 
included  some  purely  heuristic  arguments. 

Quite impressive successes were achieved in the studies of the 
asymptotic behavior of the solutions of the NS equations and of the 
structure of the corresponding 'attractors' in the infinite-dimensional 
phase spaces of fluid flows; see, e.g., the books [56,135] where some 
of the results relating to this topic were considered. (Here again 
advances were most impressive in the case of 2D turbulence.) 
However, the development of the rigorous mathematical theory of 
the high-Reynolds-number turbulence is apparently up to now only 
in its initial stage. 

In the case of developed turbulence most interesting are not 
individual solutions describing the time evolution of separated flow 
fields but 'statistical solutions' corresponding to time evolution of the 
probability measure in the space of all possible fluid-dynamics fields 
when the initial measure at the time / =0 is given. Instead of the 
difficult for mathematical treatment probability measure in the 
infinite-dimensional    space   of  turbulent    fields,   it   is   much   more 
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convenient to consider corresponding to this measure characteristic 
functional (first introduced, for the case of a random function of one 
variable, long ago by Kolmogorov [136]). Spatial characteristic 
functional of the velocity field u(x,f) = {u1(x,0,u2(x,0,u3(x,0} of a 
turbulent flow is given by the equation 

3 

O[0(x),f] = *[01(x),02(x),03(x),f] = (exp{ijjfcek(xX(x,t)dxrdx2dx3})       (22) 
k=\ 

[here x = (x15x2,x3) and integration is extended over the whole space 
of points x while the functions 0k(x), k = 1,2,3, are chosen to provide 
convergence of the integral on the right in (22)]. Angular brackets, as 
usual, denote in (22) the ensemble averaging, i.e., the integration 
with respect to probability measure. Note that the moments of all 
orders (both one-point and multipoint) of the velocity field u(x,t) 
(where t is fixed) may be easily expressed in terms of the partial 
functional derivatives of various orders of the functional O[0(x),?] 
(see, e.g., [66], Sec.4.4, or any of cited below other books where Hopf 
equation is considered). For determination of the multitime velocity 
moments relating to velocity values at various space and time points, 
the spatial-temporal characteristic functional <J>[0(x,if)] may be used. 
This functional is given by similar to (22) equation where the 
functions 0k(x) are replaced by functions 0k(x,O and integration is 
taken over the four-dimensional space of points (x,t). However, such 
functionals (introduced in the paper [137]) will be not considered 
below. 

Characteristic functional determines uniquely the probability 
measure of the turbulent velocity field and its time evolution is 
governed by linear functional derivative equation derived in 1952 
by Hopf [138]. Hopf equation   may be written in the form 

3<D[0(x),f]       - dDkD<H>^     ,ä^*X 
— _v        = i(0*     *  m   ) + v(0,ADt<D) (23) 

at dxm 

where Dk = Dk(x) = 5/50k(x)dx is the functional derivative with respect 
to the component 0k(x) of the vector 0(x), A is the Laplace operator, 
the summation is performed over the three values of the twice 
appearing indices k and m, and 0t(x) are the components of the 

vectorial function 0(x) which may be obtained from the vectorial 
function 0(x) by means of some simple linear operation. Eq. (23) 
seems to be very attractive, since it is linear, not very clumsy, and 
determined the whole probability distribution of the velocity field. 
Unfortunately,    the   mathematical    theory    of  functional    derivative 
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equations was quite undeveloped in the fifties (e.g., nothing was 
known then about the solvability of such equations and the 
conditions for the uniqueness of their solutions, and there were no 
methods for solution computation). Therefore, at first the practical 
usefulness of the Hopf equation seemed rather questionable. 
However, during almost a half century separating our time from the 
early fifties the mathematical theory of the linear functional 
derivative equations advanced considerably (to a considerable 
degree just in the connection with induced by Hopfs paper active 
development of mathematically-oriented studies of statistical fluid 
mechanics) and this made the situation much less hopeless. A 
number of results of these studies may be found, in particular, in the 
papers [139], fundamental monograph by Vishik and Fursikov [140] 
and the recent books [141] on mathematical fluid mechanics and 
turbulence theory which include analysis of the Hopf equation. 

Let us now say a few words about the paper by Foias, Manley 
and Temam of 1987 (see [139]), which did not used Hopfs equation 
directly, but referred to it repeatedly and was ideologically 
connected with the functional approach to statistical fluid mechanics. 
Here for the case of isotropic turbulence an attempt was made to 
connect the derivation of Kolmogorov's 'five-thirds law' for the 
energy spectrum with the study of statistical solutions of Navier- 
Stokes equations and even to use the found connection for the 
determination of lower bound of the range of Reynolds numbers at 
which the inertial range of wave numbers exists. However, 
apparently there were no attempts to explain with the help of 
Navier-Stokes dynamic equations the observed anomalous scaling of 
the velocity structure functions (i.e., the appearance of the non-zero 
scaling corrections £n to Kolmogorov's exponents n/3). 

Let us now made a small remark of general character at the 
end of this long text. It is clear that characteristic functional of a 
random function is a natural generalization of the characteristic 
function of a random variable (or random vector). Method of 
characteristic functions was introduced into probability theory by 
the famous Russian scientist A.M. Lyapunov almost exactly one 
hundred years ago (about 1900) when he applied this method to the 
first rigorous proof of the Central Limit Theorem of this theory under 
very general conditions. Later it was found that this method 
represents an universal tool (of very high efficiency) for the study of 
the asymptotic behavior of the families of random variables and 
random functions depending on a parameter tending to infinity. 
During the 20th century many hundreds of papers (and probably a 
few dozens of books) were published   where   characteristic   functions 
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were widely used for this purpose. Of course, characteristic 
functionals are analytically much more complicated than 
characteristic functions, but the power of analytic methods today also 
exceeds very much their possibilities in the Lyapunov's time. Let us 
therefore hope that the method of characteristic functionals will have 
in the new century a development comparable to that of the method 
of characteristic functions in the previous century. (Note that in the 
turbulence theory the investigation of the asymptotic behavior of 
fluid-dynamical fields as t ->oo or/and Re ->oo always plays a very 
important part.) Since NS equations are very complicated, it is 
reasonable to elaborate at first the new analytical methods in 
application to simpler models; from this point of view the numerous 
recent studies of "nonphysical" Burgers turbulence (to this subject, in 
particular, the lectures by Uriel Frisch at this summer school were 
devoted)    may be very useful. 

It seems natural to expect now that the 21st century will be a 
century of an astonishingly large growth of turbulent investigations. 
However, crude dimensional arguments, playing such important part 
in most fundamental achievements of the previous century, 
apparently will be of secondary importance for the future 
development of our science but much more important part will play 
the deep physical insight and very artful analytical technique. 

Acknowledgments. Many colleagues helped me in 
preparation of this text discussing with me some topics touched in 
here and/or sending me written materials related to the contents of 
my talks. I wish to thank here Peter Bradshaw, Peter Constantin, 
Siegfried Grossmann, John Lumley, Ron Panton, Peter Schmid, Mark 
Vishik, Zellman Warhaft, and Victor Yudovich whose help was 
especially important. I am very grateful also to Grisha Barenblatt 
who regularly sent me his interesting papers on turbulence, but I 
understand that he will disagree with a number of my opinions. The 
Department of Aeronautics and Astronautics of MIT and the 
Department Head Prof. E.F. Crawley do everything to facilitate my 
systematic work at MIT ant thus help substantially to my work. 
Financial support for this work was provided by U.S Office of Naval 
Research through ONR Award No. N00014-01-1-0226, and by Dr. 
John William Poduska, Sr. and his family through the Poduska Family 
Foundation giving a special grant to MIT; without this support the 
preparation of this text would be impossible. 

48 



References 

[I] Lumley J. L, Some Comments on Turbulence, Phys. Fluids A4 
(1992)203-211. 

[2] Frisch  U., Turbulence. The Legacy of A.N. Kolmogorov (Cambridge 
University Press,  1995). 

[3]   Hagen G., Über die Bewegung des Wassers in engen zylindrischen 
Röhren, Pogg. Ann. 46 (1839) 423-442. 

[4]    Reynolds O., An Experimental Investigation of the Circumstances 
which Determine Whether   the Motion   of Water Shall be 
Direct or Sinuous, and the Law of Resistance in Parallel 
Channels, Phil. Trans. Roy. Soc. London 174 (1883) 935-982; 
Reynolds O.,   On the Dynamical Theory of Incompressible 
Viscous Fluids and the Determination   of the Criterion, Phil. 
Trans. Roy.Soc. London 186 (1884) 123-161. 

[5] Feynman R.P., The Feynman Lectures on Physics   (by Feynman, 
Leighton and Sands, Addison-Wesley, Redwood City, 1964). 

[6]    Gad-el-Hak M., The Last Conundrum, Appl. Mech Rev., 50 (1997) 
i,  ii. 

[7]   Goldstein S., Fluid Mechanics in the First Half of this Century, 
Ann. Rev. Fluid Mech. 1 (1969) 1-28. 

[8] Leray J., Essai sur le mouvement d'un liquide   viscqueux 
emplissant I'espace, Acta Math. 63  (1934)  193-248. 

[9] Orr W. M. , The Stability or Instability of the Steady Motions of a 
Liquid, Parts 1 and 2, Proc. Roy. Irish Acad. A 27 (1971), 9- 
68,   69-138. 

[10] Sommerfeld   A., Ein Beitrag zur hydrodynamischen Erklärung 
der turbulenten Flüssigkeitsbewegungen, in Proc. 4th Int. 
Congr. Math. Rome, vol. Ill (1908) 116-124. 

[II] Squire H., On the Stability of the Three-Dimensional 
Disturbances of   Viscous Flow Between Parallel Walls, Proc. 
Roy. Soc. London A 142   (1933) 621-628. 

[12]   Kelvin Lord (Thomson W.),    Broad River Flowing Down an 
Inclined Plane Bed, Phil. Mag. (5)24 (1887) 272-278. 

[13]   Kelvin Lord (Thomson W.),   Rectilinear Motion of Viscous Fluid 
Between Two    Parallel    Planes, Phil. Mag. (5) 24   (1887) 188- 
196. 

[14]   Landahl M.T.,   A Note on an Algebraic Instability of Inviscid 
Parallel Shear    Flows, J. Fluid Mech. 98    (1980) 243-251. 



[15]   Butler K.M.   and   Farrell B. F., Three-Dimensional Optimal 
Perturbations in Viscous Shear Flow, Phys. Fluids A (1992) 
1637-1650, 

[16] Reddy S.C. and Henningson D.S., Energy Growth in Viscous 
Channel Flows, J. Fluid Mech. 252 (1993) 209-238. 

[17] Trefethen L.N., Trefethen A.E., Reddy S.C. and Driscol T. A., 
Hydrodynamic Stability without Eigenvalues,  Science 261 
(1993)   578-584. 

[18] Grossmann S., Instability Witout Instability?, in: Nonlinear 
Physics of Complex Systems. Current Status and Future 
Trends, ed. by J. Parisi, S.C Müller and W. Zimmermann, 10- 
22  (Springer,  Berlin,1996). 

[19]  Criminale W. O., Jackson T.L, Lasseigne D.G. and Joslin R.D., 
Perturbation Dynamics in Viscous Channel Flows, J. Fluid Mech. 
339   (1997)   55-75. 

[20] Lasseigne D.G., Joslin R.D., Jackson T.L. and Criminale W.O., The 
Transient Period for Boundary Layer Disturbances, J. Fluid 
Mech.  381   (1999), 89-119. 

[21]   Schmid P. and Hennigson D.S., Stability and Transition in Shear 
Flows (Springer, New York, 2000). 

[22]   Criminale W.O., Jackson T.L. and Joslin R.D., Hydrodynamic 
Stability. Theory and Computations   (in preparation, to be 
published by Cambridge University Press). 

[23]   Yaglom A.M., More About   Instability Theory; Studies of the 
Initial-Value   Problem, Chap. 3 of the fully revised new edition 
of "Statistical Fluid Mechanics"  by A.S. Monin and A.M. 
Yaglom (CTR Monograph, Center for Turb. Res., Stanford, 1998). 

[24} Andersson P.,Berggren M. and Henningson D.S., Optimal 
Disturbances and Bypass Transition in Boundary Layers, Phys. 
Fluids 11   (1999)  134-150. 

[25]    Luchini P., Reynolds-Number-Independent Instability of the 
Boundary Layer Over a Flat Surface: Optimal Perturbations, J. 
Fluid Mech. 404 ( 2000) 289-309. 

[26]   Baggett J. S, Driscoll T. A. and Trefethen L.N., A Mostly Linear 
Model of Transition to Turbulence, Phys.  Fluids 7 (1995) 833- 
838. 

[27]   Gebhardt T. and Grossmann S., Chaos Transition Despite Linear 
Stability,  Phys.  Rev., E 50    (1994),  3705-3711. 

[28] Grossmann S., The Onset of  Shear Flow Turbulence,   Rev. Mod. 
Phys. 72  (2000) 603-618. 

[29] Boberg I. and Brosa U., Onset of Turbulence   in   a   Pipe, Z 
Naturforsch.  A 43  (1998)  697-726. 



[30]   Zang T. A. and Krist S. E., Numerical Experiments on Stability 
and Transition in Plane Channel Flow, Theoret. Comput. Fluid 
Dynamics  1 (1989) 41-64. 

[31]   Sandham N.D. and Kleiser L, The Late Stages of Transition to 
Turbulence in Channel Flow, J. Fluid Mech. 245 (1992) 319- 
348. 

[32]    Bergström L, Interactions of Three Components and Subcritical 
Self-Sustained Amplification of Disturbances in  Plane 
Poiseuille Flow, Phys.  Fluids 11   (1999) 590-601. 

[33] Landau, L.D., On the Problem of Tubulence, Dokl. Akad. Nauk 
SSSR, 44    (1944), 339-342. Engl translation in C.R. Acad. Sei. 
URSS, 44 (1944), and   in Collected Papers by LD. Landau 
(Pergamon, Oxford, 1965). 

[34]  Landau L.D. and Lifshitz E.M., Continuum Mechanics 
(Gostekhizdat, Moscow, 1944, in Russian); see also any of the 
subsequent editions of Fluid Mechanics   by Landau and Lifshitz. 

[35] Hopf E., A Mathematical Example Displaying Features of 
Turbulence, Comm. Pure Appl. Math. 1 (1948) 303-322. 

[36] Ruelle D. and Takens F., On the Nature of Turbulence, Comm. 
Math. Phys. 20   (1971) 167-192; Ruelle D., Turbulence, Strange 
Atractors and Chaos   (World Scientific, Singapore, 1995). 

[37]    Lorenz E.N., Deterministic Nonperiodic Flow, J. Atmos. Sei. 20 
(1963)   130-141. 

[38] Feigenbaum M.J., The Universal Metric Properties of Nonlinear 
Transformations, J. Stat. Phys.  21   (1979) 669-706. 

[39] Feigenbaum M.Y., The Transition to Aperiodic Behavior in 
Turbulent    Systems, Comm. Math. Phys. 77 (1980) 65-86. 

[40] Grossmann S. and Thomae S., Invariant Distributions and 
Stationary Correlation Functions of    One-Dimensional Discrete 
Processes, Z. Naturfosch. 32 A (1977) 1353-1363. 

[41] Pomeau Y. and Manneville P., Intermittent Transition to 
Turbulence in Dissipative Dynamical Systems, Comm. Math. 
Phys.   74    (1980) 189-197. 

[42]   Manneville P. and Pomeau Y., Different Ways to Turbulence in 
Dynamic Systems, PhysicaD 1  (1980) 219-226. 

[43] Barenblatt G.I., loss G.   and Joseph D.D. (eds.), Nonlinear 
Dynamics and Turbulence   (Pitman, Boston, 1983). 

[44]  Berge P., Pomeau Y and Vidal C, L'Ordre dans la Chaos. Vers une 
Approache Deterministe de la Turbulence   (Hermann, Paris, 
1988). 

[45] Lichtenberg A.J. and Lieberman M.A., Regular and Chaotic 
Dynamics,  2nd ed.   (Springer, New York, 1992). 



[46]   Kadanoff L.P., From Order to Chaos. Essays: Critical, Chaotic 
and   Otherwise    (World Scientific, Singapore, 1993). 

[47]  Hilborn R. C, Chaos and Nonlinear Dynamics. An Introduction   for 
Scientists and Engineers   (Oxford University Press, New York, 
1994). 

[48] Newell A.C.,   Chaos and Turbulence: Is There   a Connection?, in 
Mathematics Applied   to Fluid Mechanics and Stability   (Soc. 
Ind. Appl. Math., Philadelphia, 1986). 

[49] Tsuji Y., Hondu K., Nakamura I., Sato S., Is Intermittent Motion 
of Outer Flow in the Turbuent Boundary Layer Deterministic 
Chaos?, Phys. Fluids A3  (1991)1941-1946. 

[50]   Menevau C, Comments on the Paper by Tsuji et al., Phys. Fluids 
A 4  (1992)   1587-1588. 

[51] Blodeaux P.   and Vittori, G., A Route to Chaos in an Oscilatory 
Flow: Feigenboum Scenario, Phys. Fluids A3 (1991) 2492- 
2495. 

[52] Rockwell D.   Nuzzi, F., Magness, C, Period Doubling in the Wake 
of 3D Cylinder, Phys.  Fluids, A3  (1992)  1477-1478. 

[53]   Tomboulides A. G., Triantafyllow G.S., Karniadakis G.E., A New 
Mechanism of Period Doubling in Free Shear Flows, Phys. Fluids 
A 4  (1992)   1333-1335. 

[54]   Guzman A.M. and Amon C.H., Transition to Chaos in Converging- 
Diverging    Channel Flows: Ruelle-Takens-Newhouse Scenario, 
Phys.   Fluids 6(6)    (1994) 1994- 2002. 

[55] Goren G., Eckmann, J.-P.   and Procaccia, I., Scenario for Onset of 
Space-Time Chaos, Phys.Rev.  E 57 (1998)  4106-4134. 

[56] Babin A.V. and Vishik, M.I., Attractors of Evolution Equations 
(North-Holland, Amsterdam,   1992). 

[57] Izakson A.A., On the Formula for the Velocity   Distribution   Near 
Walls, Zh. Eksper. Teor. Fiz. 7 (1937) 919-924 (in Russian, 
Engl. transl. in Tech. Phys. USSR 4 (1937) 155-159). 

[58] Millikan C.B., A   Critical Discussion of Turbulent Flows in 
Channels and Circular Tubes, in Proc. 5th Intern. Congr. Appl. 
Mech., ed by J.P. Den Hartog and  H. Peters (Wiley, New York, 
1939). 

[59] Clauser   F.H., Turbulent Boundary Layer, Adv. Appl. Mech. 4 
(1954)   1-51. 

[60] Fernholz H.-H.,    Finley P.J., The Incompressible Zero-Pressure- 
Gradient Turbulent Boundary Layer: An Assessment of the Data, 
Prog.  Aerospace Sei. 32 (1986) 245-311. 

[61]   Yaglom A.M.,   Similarity Laws for Constant-Pressure and 
Pressure-Gradient Turbulent Wall Flows, Ann. Rev. Fluid  Mech. 
11   (1979)   505-540. 



[62]   Kader B.A. and Yaglom A.M., Similarity Laws for   Turbulent   Wall 
Flows, in: Developments in Science and Technology, Ser. Mech. 
Liquid and Gas 15 (1980), 81-153 (Soviet Inst. Sei. and Engn. 
Inform., Moscow, in Russian). 

[63] Mises R. von, Some Remarks on the Laws of   Turbulent Motion in 
Tubes, in: T. von Kärmän Anniversary Volume   (Calif. Inst. 
Techn. Press, Pasadena, Calif.), 317-327. 

[64] Kader B.A. and Yaglom A.M., Heat and Mass Transfer Laws for 
Fully Turbulent Wall Flows, Int. J. Heat and Mass Transfer 15 
(1972)   2329-2351. 

[65] Kader V.A. and   Yaglom A.M., Roughness and Pressure-Gradient 
Effects on Turbulent Boundary Layers, in: Developments in 
Science and Technology, Ser. Mech. Liquid and Gas 18 (1984) 
3-111 (Soviet Inst. Sei. and Engn. Inform., Moscow; in Russian). 

[66]   Monin A.S. and Yaglom A.M., Statistical Fluid Mechanics,  vols. 1 
and 2 (MIT Press,   Cambridge, Mass.,1971 and 1975). 

[67] Townsend A.A., The Structure of Turbulent Shear Flow 
(Cambridge  University Press,1956). 

[68]  Yaglom A.M., A.N. Kolmogorov as a Fluid Mechanician and Founder 
of a School in Turbulence Research, Ann. Rev. Fluid Mech. 26 
(1994)   1-22. 

[69] Townsend A.A., Equilibrum Layers and Wall Turbulence, J. Fluid 
Mech. 11   (1961) 97-120. 

[70] Bradshow P., "Inactive" Motion and Pressure Fluctuations in 
Turbulent Boundary Layers, J. Fluid Mech. 30 (1967) 241- 
258. 

[71] Morrison J. F., Subramanian C.S. and Bradshaw P., Bursts and the 
Law of the Wall in Turbulent Boundary Layes, J. Fluid Mech. 
241   (1992)   75-108. 

[72] Townsend A.A., The Structure of Turbulent Shear Flow,  2nd 
edition  (Cambridge University Press,1976). 

[73]   Perry A.E. and Li J. D., Experimental Support for the Attached- 
Eddy Hypothesis on Zero-Pressure-Gradient Turbulent Boundary 
Layers, J. Fluid Mech. 218 (1990) 405-438. 

[74] Yaglom A.M., Fluctuation Spectra and Variances in Convective 
Turbulent Boundary Layers: A Reevaluation of Old Models, Phys. 
Fluids   6  (1994)  962-972. 

[75] Barenblatt G.I., Chorin A.J. and Prostokishin V.M.,   Scaling Laws 
for Fully Developed Turbulent Flows in Pipes, Appl. Mech. Rev. 
50   (1997)   413-429. 

[76]   Schlichting H., Boundary Layer Theory   (McGrow-Hill, New York, 
1968). 



[77] Gad-el-Hak M. and Bandyopadhyay P.R., Reynolds Number Effects 
in Wall-Bounded Turbulent Flows, Appl. Mech. Rev. 47 (1994) 
307-366. 

[78] Barenblatt G.l and Zeldovich Ya. B.,   Self-Similar Solutions as 
Intermediate    Asymptotics, Ann. Rev. Fluid Mech. 4 (1972) 
285-312. 

[79] Barenblatt G.I., Scaling,  Self-Similarity and Intermediate 
Asymptotics   (Cambridge University Press,  1996). 

[80]   Nikuradze J., Gesetzmässigkeiten der turbulente Strömung in 
glatten Rohren, VDI Forschugheft Nr.356 (1932) 

[81] Barenblatt G.I., On the Scaling Laws (Incomplete  Self-Similarity 
With Respect to Reynolds Number) for the Developed Turbulent 
Flow in Tubes, C.R. Acad.Sci. Paris, Ser. II, 313 (1991) 307- 
312; Barenblatt G.I., Scaling Laws   for Fully Developed Shear 
Flows. Parti: Basic Hypotheses and Analysis, J. Fluid Mech. 
248 (1993) 513-520; Barenblatt G.l. and Prostokishin   V.M., 
Scaling Laws for Fully Developed Shear Flows. Part 2: 
Processing of Experimental Data, J. Fluid Mech. 248 (1993) 
521-529. 

[82] Barenblatt G.L, Chorin A.J. and Prostokishin V. M., Self-Similar 
Intermediate Structures in Turbulent Boundary Layers at Large 
Reynolds Numbers, J. Fluid Mech. 410 (2000) 263-283. 

[83]   Barenblatt G.l. and Chorin A.J., Scaling Laws and   Vanishing 
Viscosity for Wall-Bounded Shear Flows and for Local 
Structure in Developed Turbulence, Comm. Pure Appl. Math. 50 
(1997) 381-398; Barenblatt G.L, Scaling Laws for Turbulent 
Wall-Bounded Shear   Flows at Very Large Reynolds Numbers, J. 
Eng. Math. 36 (1999) 361-384. 

[84] Zagarola M. and Smits A.J., Mean-Flow Scaling of Turbulent Pipe 
Flow, J. Fluid Mech. 373 (1998) 33-79. 

[85] Österlund Ü.M., Johansson, A.V., Nagib H.M. and Hites, M.H. , A 
Note on the Overlap Region in Turbulent Boundry   Layers,   Phys. 
Fluids 12  (2000) 1-4. 

[86] Smits A.J. and Zagarola M.V., Response to: Scaling of the 
Intermediate Region on Wall-Bound Turbulence: The Power 
Law, Phys.  Fluids 10 (1998)  1045-1046. 

[87]   Zagarola M., Perry A.E. and Smits A.J., Log Laws or Power Laws: 
The Scaling in the Overlap Layer, Phys. Fluids   9 (1997) 
2094-2100. 

[88] Barenblatt G.l and Chorin A.J., Scaling of the Intermediate 
Region in Wall-Bounded Turbulence: A Power Law, Phys. 
Fluids  10   (1998)   1043-1044. 



[89] Barenblatt G.I, Chorin A.J and Prostokishin V.M., A Note   on the 
Intermediate Region in Turbulent Boundary Layers, Phys Fluids 
12   (2000)   2159-2161. 

[90] Österlund Ü.M., Johansson A.V. and Nagib H.M., Comments on "A 
Note on the Intermediate Region in Turbulent Boundary Layers", 
Phys. Fluids 12  (2000) 2360-2363. 

[91]   Buschmann M. and Gad-el-Hak M., Power Law or Log Law for the 
Turbulent Boundary Layer?, Bull. Amer. Phys. Soc. 45 (2000), 
No.9, 160; Panton R.L, Power Law or Log Law: That is NOT a 
Question, ibid.  45 (2000), No.9, 160-161; Nagib H., 
Christophorou C, Österlund J. and Monkewitz P., Higher 
Reynolds Number Measurements on a Flate-Plate Boundary 
Layer in the NDF,   ibid. 45 (2000), No.9, 161. 

[92]   Panton   R. L., Some Issues Concerning Wall Turbulence, 
Informal document distributed by the author; Panton R. L., 
Comments on "A Note on the Intermediate Region in a 
Turbulent Boundary Layer", a note submitted to Phys. Fluids. 

[93] Cole J.D., Perturbation Methods in Applied Mathematics 
(Blaisdell, Waltham, Mass.,1968). 

[94 Van Dyke M., Perturbation Methods in Fluid Mechanics   (Parabolic 
Press, Stanford, Calif., 1975). 

[95] Tennekes H. and Lumley J.L., A First Course in Turbulence   (MIT 
Press, Cambridge, Mass., 1972). 

[96] Panton R.L., Incompressible Flow, 2nd ediion (Wiley, New York 
1996). 

[97] George W.K., Castillo L., Zero-Pressure-Gradient Boundary 
Layers, Appl.  Mech. Rev. 50 (1997), 689-729. 

[98]   Wosnik M., Castillo L. and George W.K., A Theory for Turbulent 
Pipe and Channel Flows, J. Fluid  Mech. 421  (2000) 115-145. 

[99]   Nazarenko S., Kevlahan N. K-R. and Dubrulle S., Nonlinear RDT 
Theory of Near-Wall Turbulence, Physica    D 139 (2000) 158- 
176. 

[100] Yaglom A.M., Similarity Laws for Wall Turbulent Flows: Their 
Limitations and Generalizations, in: New Approaches and 
Concepts in Turbulence, ed. by Th. Dracos and A.Tsinober, 7-27 
(Birkhäufer,  Basel,  1993). 

[101] Högström U., Analysis of Turbulence Structure in the Surface 
Layer with Modified Similarity Formulation for Near Neutral 
Conditions, J. Atmos.  Sei. 47 ( 1990) 1949-1972. 

[102] Smedman A.-S., Some Turbulence Characteristics in Stable 
Atmospheric Boundary Layer Flow, J. Atmos. Sei.   48 (1991) 
856-868. 



[103]   Panton R.L., A Reynolds Stress Function for Wall Layers, J. 
Fluid Eng. 119(1997) 325-330. 

[104] Fisher M., Jovanvic J. and Durst F., Near-Wall Behavior of 
Statistical Properties in Turbulent Flows, Int. J. Heat and Fluid 
Flow    21 (2000)   471-479. 

[105] DeGraaff D. B. and Eaton J.K., Reynolds-Number Scaling of the 
Flat-Plate Turbulent Boundary Layer, J. Fluid Mech. 422 
(2000)   319-346. 

[106] Hunt J. C. R. and Morrison J.F., Eddy Structure   in Turbulent 
Boundary Layers, Eur. J.   Mech. B./ Fluids   19 (2000) 673- 
694. 

[107] Hunt J. C. R. and Carlotti P., Statistical Structure of the High- 
Reynolds-Number Turbulent Boundary Layer, to be published 
in Flow, Turb. and Comb. (2001) 

[108] Novikov E.A., Intermittency and Scale Similarity of the 
Structure of Turbulent Flow, Prikl. Mat. Mekh. (Appl. Math. 
Mekh.) 35  (1971) 266-277. 

[109]   Barenblatt G.l.and Goldenfeld   N., Does Fully Developed 
Turbulence Exist? Reynolds Number Independence Versus 
Asymptotic    Covariance, Phys. Fluids 7    (1995) 3078-3082. 

[110] Barenblatt G.I. and Chorin A.J., New Perspectives in Turbulance: 
Scaling Laws, Asymptotics, and Intermittency, SIAM Rev. 40 
(1998)   265-291. 

[111] Barenblatt G.I. and Chorin A.J., Scaling Laws and Vanishing 
Viscosity     Limits in Turbulence Theory, Proc. Symp. Appl. 
Math.  54 (1998) 1-25. 

[112] Praskovsky A. and Onsley S., Measurments of the Kolmogorov 
Constant and Intermittency Exponents at Very High Reynolds 
Numbers,  Phys. Fluids    A 6 (1994) 2886-2888. 

[113] Yaglom A.M., Laws of Small-Scale Turbulence in Atmosphere 
and Ocean (In Commemoration of the 40th Anniversary of the 
Theory of Locally Isotropie Turbulence), Izv. Akad. Nauk SSSR, 
Fiz. Atmos. i Okeana 17 (1981) 1235-1257 (also in: Izvestia, 
Atmos.  Oceanic Phys. 17 (1981) 919-935). 

[114] Sreenivasan K.R., On the University of the Kolmogorov 
Constant, Phys. Fluids 7 (1995) 2778-2784. 

[115] Kraichnan R.H., On Kolmogorov's Inertial Range Theories, J. 
Fluid Mech. 62 (1974) 305-330. 

[116] Chorin A.J., Vorticity and Turbulence   (Springer, New York, 
1994). 

[117] Yaglom A.M., The Influence of Fluctuations in Energy 
Dissipation Rate on   the Shape of Turbulence Characteristics 



in the Inertial Interval,   Dokl. Akad. Nauk SSSR    166 
(1966) 49-52 (also in Sov.  Phys. - Doklady 11, 26-29). 

[118] Barenblatt G.I., Chorin A.J. and Prostokishin V.M., Comments on 
the Paper "On the Scaling of Three-Dimensional Homogeneous 
and Isotropie Turbulence" by Benzi et al., Physica D 127 
(1999)   105-110. 

[119] Benzi R., Ciliberto C, Baudet C. and Ruiz Chavarria G., On the 
Scaling of Three-Dimensional Homogeneous and Isotropie 
Turbulence,  Physica D 80 (1995) 385-398. 

[120] Benzi R., Ciliberto C, Baudet C. and Ruiz Chavarria G., Reply to 
the Comments of Barenblatt et al., Physica D 127 (1999) 
111-112. 

[121] Arneodo A. et al. (24 authors), Structure Functions in 
Turbulence, in Various Flow Configurations, at Reynolds 
Number Between 30 and 5000, Using   Extended Self-Similarity. 
Europhys.    Lett. 34 (1996) 411-416. 

[122] Sreenivasan K.R., and Dhruva B., Is There Scaling in High- 
Reynolds-Number Turbulence?,    Prog. Theor. Phys. Suppl. 130 
(1998)   103-120. 

[123] Gamard S. and George W.K., Reynolds Number Dependance of 
Energy Spectra in the Overlap Region of Isotropie Tubulence, 
Flow,  Turb. and Combus. 63 (1999) 443-477. 

[124] Mydlarski L. and Warhft Z., On the Onset of High-Reynolds- 
Number Grid-Generated Wind Tunnel Turbulence, J. Fluid  Mech. 
320   (1996)   331-368. 

[125] Arad I., Dhruva B., Kurien S., L'vov V.S., Procaccia I. and 
Sreenivasan K.R., Extraction of Anisotropie Contributions in 
Turbulent Flows, Phys. Rev. Lett. 81  (1998) 5330-5333; 
Kurien S., L'vov V.S., Procaccia I. and Sreenivasan K.R., Scaling 
Structure of the Velocity Statistics in Atmospheric Boundary 
Layers, Phys. Rev.  E 61 (2000) 407-421;   Kurien S. and 
Sreenivasan    K.R., Anisotropie Scaling Contributions to 
Higher-Order Structure Functions in High-Reynolds-Number 
Turbulence,  Phys. Rev.   E 62 (2000) 2206-2212. 

[126] Kaimal J.C., Wyngaard J. C, Izumi Y. and Cote O.R., Spectral 
Characteristics of Surface Layer Turbulence, Quart. J. Roy. 
Meteor.  Soc. 98 (1972) 563-589. 

[127] Shen X. and Warhaft Z., The Anisotropy of the Small Scale 
Structure in High Reynolds Number (R^= 1000) Turbulent Shear 
Flow, Phys.    Fluids 12  (2000) 2976-2989. 

[128[ Warhaft Z., Passive Scalars in Turbulent Flows, Ann. Rev. Fluid 
Mech. 32  (2000) 203-240. 



[129] Gonzalez M., Study of the Anisotropy of a Passive Scalar Field 
at the Level of Dissipation, Phys.  Fluids 12 (2000) 2302-2310; 
Shraiman B.I. and Siggia E. D.., Scalar  Turbulence, Nature 405 
(2000)   639-646. 

[130] Jackson E., Million-Dollar Mathematics Prizes Announced, 
Notices Amer. Math. Soc. 47 (2000) 871-879. 

[131] Constantin P., Some   Open Problems and Research Directions in 
the Mathematical Study of Fluid Dynamics, to be published in 
Mathematics Unlimited - 2001 and Beyond   (Springer, New 
York, 2001). 

[132] L'vov V. and Procaccia I., Hydrodynamic Turbulence: a 19th 
Century Problem with a Challenge for the 21st Century, in 
Turbulence Modeling and Vortex Dynamics, ed. by O. Bortav 
et al., 1-16 (Springer, Berlin,1997); L'vov V. and Procaccia 
I., Analitic Calculation of the Anamalous Exponents in 
Turbulence: Using the Fusion Rules to Flush Out a Small 
Parameter,  Phys. Rev. E 62 (2000) 8037-8051. 

[133] Foias C, What Do the   Navier-Stokes Equations Tell Us about 
Turbulence?, in Harmonic Analysis and Nonlinear Differential 
Equations    ("Contemporary    Mathematics", vol.208, ed. by 
M.L.Lapidus et al.), 151-180 (Amer. Math. Soc, Providence, 
R.I., 1997). 

[134] Kraichnan R. H., Inertial Ranges in Two-Dimensional 
Turbulence,  Phys.  Fluids 10 (1967) 1417-1423, 

[135] Constantin P., Foias C. and Temam R., Attractors Representing 
Turbulent Flows,   Memoirs Amer. Math. Soc. 53, No. 314 (Amer. 
Math. Soc, Providence, R.I., 1985); Constantin P. and Foiac C, 
Navier-Stokes Equations   (Chicago Univ. Press, 1988); Temam 
R., Infinite Dimensional Dynamical Systems in Mechanics and 
Physics   (Springer, New York, 1998);   Temam R., Navier-Stokes 
Equations   and Nonlinear Functional Analysis  (Soc. Ind. Appl. 
Math., Philadelphia, 1994); Eden A.,   Foias C,   Nicolaenko B., 
and Temam R., Exponential Attractors for   Dissipative 
Evolution Equations   (Wiley, New York, 1994). 

[136[ Kolmogorov A.N., La transformation de   Laplace dans les 
espaces lineares, C.R.Acad. Sei. Paris 200 (1935) 1717-1718. 

[137] Lewis R.M. and Kraichnan R.H., A Space-Time Functional 
Formalism for Turbulence, Comm. Pure Appl. Math. 15(1962) 
397-411. 

[138] Hopf E., Statistical Hydrudynamics and Functional Calculus, J. 
Rat. Mech. Anal., 1  (1952), 87-123. 

[139] Foias C, Statistical Study of Navier-Stokes Equations, Parts I 
and II, Rend. Sem. Mat. Univ. Padova 48 (1973), 219-349; 49 

10 



(1973); Ladyzhenskaya O.A., Vershik A.M. Sur revolution des 
mesures determinees par les equations de Navier-Stokes et la 
resolution du problemes de Cauchy pour I'equation statistique 
de E.Hopf, Ann. Scuola   Norm. Sup. Pisa, Ser. IV, 4 (1977)   209- 
230; Foias C, Manley O.P. and Temam R., Self-Similar 
Invariant Families of Turbulent Flows, Phys.  Fluids 30 (1987) 
2007-2020;   Inoue A., A Tiny Step Towards a Theory of 
Functional Derivative Equations - A Strong Solution   of the 
Space-Time Hopf Equation, in: The Navier-Stokes Equations II - 
Theory and Numerical Methods, ed. by J.G. Heywood et al., 246- 
261  (Springer, Berlin, 1991); Fursikov A.V., Time Periodic 
Statistical Solutions of the Navier-Stokes Equations, in 
Turbulence Modeling and Vortex Dynamics, ed. by O.Bortav et 
al.,  123-147 (Springer,  Berlin,  1997). 

[140] Vishik M.I. and Fursikov A.V., Mathematical Problems of 
Statistical  Hydrodynamics    (Kluwer, Dordrecht, 1988). 

[141]   Capinski M. and Cutland N.J., Nonstandard Methods for 
Stochastic Fluid Mechanics (Word Scientific, Singapore, 1995); 
Doering C.R. and Gibbon J. D., Applied Analysis of the Navier- 
Stokes Equations (Cambridge Univ. Press, 1995); Monin A.S. and 
Yaglom A.M.., Statisticheskaya   Gidromekhanika (Statistical 
Fluid Mechanics), Vol. 2, 2nd Russian Ed. (Gidrometizdat, St.- 
Peterburg, 1996, in Russian). 

11 



it(0l-ö<£-06ö£ 

THE CENTURY OF TURBULENCE THEORY: 
THE MAIN ACHIEVEMENTS AND UNSOLVED   PROBLEMS 

Akiva Yaglom 

1.   Introduction 

The flows of fluids actually met both in nature and engineering 
practice are turbulent in the overwhelming majority of cases. 
Therefore, in fact the humanity began to observe the turbulence 
phenomena at the very beginning of their existence. However only 
much later some naturalists began to think about specific features of 
these phenomena. And not less than 500 years ago the first attempts 
of qualitative analysis of turbulence appeared - about 1500 
Leonardo da Vinci again and again observed, described and sketched 
diverse vortical formations ('coherent structures' according to the 
terminology of the second half of the 20th century) in various 
natural water streams. In his descriptions this remarkable man 
apparently for the first time used the word 'turbulence' (in Italian 'la 
turbolenza', originating from Latin 'turba' meaning turmoil) in its 
modern sense and also outlined the earliest version of the procedure 
similar to that now called the 'Reynolds decomposition' of the flow 
fields into regular and random parts (see, e.g., [1,2]). However, 
original Leonardo's studies did not form a 'theory' in the modern 
meaning of this word. Moreover, he published nothing during all his 
life and even used in most of his writings a special type which could 
be read only in a mirror. Therefore his ideas became known only in 
the second half of the 20th century and had no influence on the 
subsequent investigations  of fluid flows. 

During the first half of the 19th century a number of 
interesting and important observation of turbulence phenomena 
were carried out (such as, e.g., the early pipe-flow observation by G. 
Hagen [3]) but all of them were only the precursors of the future 
theory of turbulence. Apparently, the first theoretical works having 
relation to turbulence were the brilliant papers on hydrodynamic 
stability published by Kelvin and Rayleigh at the end of the 19 th 
century (apparently just Kelvin who know nothing about Leonardo's 
secret writings, independently introduced the term "turbulence" into 
fluid mechanics). However, these papers only 'had relation to 
turbulence', but did not concern the developed turbulence at all. First 
scientific description of turbulence was in fact given by Reynolds [4]. 
In his paper of 1883 he described the results of his careful 
observations   of water  flows in pipes, divided  all pipe  flows into the 
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